RESUMO
Pulmonary mycoses are difficult to treat and detrimental to patients. Fungal infections modulate the lung immune response, induce goblet cell hyperplasia and metaplasia, and mucus hypersecretion in the airways. Excessive mucus clogs small airways and reduces pulmonary function by decreasing oxygen exchange, leading to respiratory distress. The forkhead box protein A2 (FOXA2) is a transcription factor that regulates mucus homeostasis in the airways. However, little is known whether pulmonary mycosis modulates FOXA2 function. Herein, we investigated whether Blastomyces dermatitidis and Histoplasma capsulatum-infected canine and feline lungs and airway epithelial cells could serve as higher animal models to examine the relationships between fungal pneumonia and FOXA2-regulated airway mucus homeostasis. The results indicate that fungal infection down-regulated FOXA2 expression in airway epithelial cells, with concomitant overexpression of mucin 5AC (MUC5AC) and mucin 5B (MUC5B) mucins. Mechanistic studies reveal that B. dermatitidis infection, as well as ß-glucan exposure, activated the Dectin-1-SYK-epidermal growth factor receptor-AKT/extracellular signal-regulated kinase 1/2 signaling pathway that inhibits the expression of FOXA2, resulting in overexpression of MUC5AC and MUC5B in canine airway cells. Further understanding of the role of FOXA2 in mucus hypersecretion may lead to novel therapeutics against excessive mucus in both human and veterinary patients with pulmonary mycosis.
Assuntos
Blastomicose/metabolismo , Histoplasmose/metabolismo , Pneumopatias Fúngicas/metabolismo , Muco/metabolismo , Transdução de Sinais/fisiologia , Animais , Blastomicose/patologia , Gatos , Modelos Animais de Doenças , Cães , Receptores ErbB/metabolismo , Fator 3-beta Nuclear de Hepatócito/metabolismo , Histoplasma , Histoplasmose/patologia , Pneumopatias Fúngicas/patologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinase Syk/metabolismoRESUMO
Fungal infections in CD4+ T cell immunocompromised patients have risen sharply in recent years. Although vaccines offer a rational avenue to prevent infections, there are no licensed fungal vaccines available. Inactivated vaccines are safer but less efficacious and require adjuvants that may undesirably bias toward poor protective immune responses. We hypothesized that reducing the TCR signaling threshold could potentiate antifungal CD8+ T cell responses and immunity to inactivated vaccine in the absence of CD4+ T cells. In this study, we show that CBLB, a negative regulator of TCR signaling, suppresses CD8+ T cells in response to inactivated fungal vaccination in a mouse model of CD4+ T cell lymphopenia. Conversely, Cblb deficiency enhanced both the type 1 (e.g., IFN-γ) and type 17 (IL-17A) CD8+ T cell responses to inactivated fungal vaccines and augmented vaccine immunity to lethal fungal pneumonia. Furthermore, we show that immunization with live or inactivated vaccine yeast did not cause detectable pathologic condition in Cblb-/- mice. Augmented CD8+ T cell responses in the absence of CBLB also did not lead to terminal differentiation or adversely affect the expression of transcription factors T-bet, Eomes, and RORγt. Additionally, our adoptive transfer experiments showed that CBLB impedes the effector CD8+ T cell responses in a cell-intrinsic manner. Finally, we showed that ablation of Cblb overcomes the requirement of HIF-1α for expansion of CD8+ T cells upon vaccination. Thus, adjuvants that target CBLB may augment inactivated vaccines and immunity against systemic fungal infections in vulnerable patients.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Fúngicas/imunologia , Imunidade Celular , Pneumopatias Fúngicas/imunologia , Pneumonia/imunologia , Proteínas Proto-Oncogênicas c-cbl/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linfócitos T CD8-Positivos/patologia , Vacinas Fúngicas/farmacologia , Humanos , Interferon gama/genética , Interferon gama/imunologia , Interleucina-17/genética , Interleucina-17/imunologia , Pneumopatias Fúngicas/genética , Pneumopatias Fúngicas/patologia , Pneumopatias Fúngicas/prevenção & controle , Camundongos , Camundongos Knockout , Pneumonia/genética , Pneumonia/patologia , Pneumonia/prevenção & controle , Proteínas Proto-Oncogênicas c-cbl/genética , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/farmacologiaRESUMO
Our understanding of persistence and plasticity of IL-17A+ memory T cells is clouded by conflicting results in models analyzing T helper 17 cells. We studied memory IL-17A+ CD8+ T-cell (Tc17) homeostasis, persistence and plasticity during fungal vaccine immunity. We report that vaccine-induced memory Tc17 cells persist with high fidelity to the type 17 phenotype. Tc17 cells persisted durably for a year as functional IL-17A+ memory cells without converting to IFNγ+ (Tc1) cells, although they produced multiple type I cytokines in the absence of residual vaccine antigen. Memory Tc17 cells were canonical CD8+ T cells with phenotypic features distinct from Tc1 cells, and were Ror(γ)thi, TCF-1hi, T-betlo and EOMESlo. In investigating the bases of Tc17 persistence, we observed that memory Tc17 cells had much higher levels of basal homeostatic proliferation than did Tc1 cells. Conversely, memory Tc17 cells displayed lower levels of anti-apoptotic molecules Bcl-2 and Bcl-xL than Tc1 cells, yet were resistant to apoptosis. Tc1 cells required Bcl-2 for their survival, but Bcl-2 was dispensable for the maintenance of Tc17 cells. Tc17 and Tc1 cells displayed different requirements for HIF-1α during effector differentiation and sustenance and memory persistence. Thus, antifungal vaccination induces durable and stable memory Tc17 cells with distinct requirements for long-term persistence that distinguish them from memory Tc1 cells.
Assuntos
Blastomyces/imunologia , Blastomicose/imunologia , Vacinas Fúngicas/imunologia , Memória Imunológica , Interferon gama/imunologia , Células Th17/imunologia , Animais , Blastomicose/microbiologia , Blastomicose/fisiopatologia , Blastomicose/prevenção & controle , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular , Humanos , Interleucina-17/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Células Th17/citologiaRESUMO
Fungal infections have skyrocketed in immune-compromised patients lacking CD4+ T cells, underscoring the need for vaccine prevention. An understanding of the elements that promote vaccine immunity in this setting is essential. We previously demonstrated that vaccine-induced IL-17A+ CD8+ T cells (Tc17) are required for resistance against lethal fungal pneumonia in CD4+ T cell-deficient hosts, whereas the individual type I cytokines IFN-γ, TNF-α and GM-CSF, are dispensable. Here, we report that T cell-intrinsic MyD88 signals are crucial for these Tc17 cell responses and vaccine immunity against lethal fungal pneumonia in mice. In contrast, IFN-γ+ CD8+ cell (Tc1) responses are largely normal in the absence of intrinsic MyD88 signaling in CD8+ T cells. The poor accumulation of MyD88-deficient Tc17 cells was not linked to an early onset of contraction, nor to accelerated cell death or diminished expression of anti-apoptotic molecules Bcl-2 or Bcl-xL. Instead, intrinsic MyD88 was required to sustain the proliferation of Tc17 cells through the activation of mTOR via Akt1. Moreover, intrinsic IL-1R and TLR2, but not IL-18R, were required for MyD88 dependent Tc17 responses. Our data identify unappreciated targets for augmenting adaptive immunity against fungi. Our findings have implications for designing fungal vaccines and immune-based therapies in immune-compromised patients.
Assuntos
Blastomyces/imunologia , Blastomicose/prevenção & controle , Vacinas Fúngicas/uso terapêutico , Memória Imunológica , Pneumonia/prevenção & controle , Linfócitos T Citotóxicos/imunologia , Células Th17/imunologia , Animais , Blastomyces/fisiologia , Blastomicose/imunologia , Blastomicose/metabolismo , Blastomicose/microbiologia , Proliferação de Células , Células Cultivadas , Depleção Linfocítica , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fator 88 de Diferenciação Mieloide/metabolismo , Pneumonia/imunologia , Pneumonia/metabolismo , Pneumonia/microbiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Tipo I de Interleucina-1/metabolismo , Transdução de Sinais , Linfócitos T Citotóxicos/metabolismo , Linfócitos T Citotóxicos/microbiologia , Linfócitos T Citotóxicos/patologia , Serina-Treonina Quinases TOR/metabolismo , Células Th17/metabolismo , Células Th17/microbiologia , Células Th17/patologia , Receptor 2 Toll-Like/metabolismoRESUMO
Blastomyces adhesin-1 (BAD-1) is a 120-kD surface protein on B. dermatitidis yeast. We show here that BAD-1 contains 41 tandem repeats and that deleting even half of them impairs fungal pathogenicity. According to NMR, the repeats form tightly folded 17-amino acid loops constrained by a disulfide bond linking conserved cysteines. Each loop contains a highly conserved WxxWxxW motif found in thrombospondin-1 (TSP-1) type 1 heparin-binding repeats. BAD-1 binds heparin specifically and saturably, and is competitively inhibited by soluble heparin, but not related glycosaminoglycans. According to SPR analysis, the affinity of BAD-1 for heparin is 33 nM±14 nM. Putative heparin-binding motifs are found both at the N-terminus and within each tandem repeat loop. Like TSP-1, BAD-1 blocks activation of T cells in a manner requiring the heparan sulfate-modified surface molecule CD47, and impairs effector functions. The tandem repeats of BAD-1 thus confer pathogenicity, harbor motifs that bind heparin, and suppress T-cell activation via a CD47-dependent mechanism, mimicking mammalian TSP-1.
Assuntos
Antígenos de Fungos/metabolismo , Antígenos de Superfície/metabolismo , Blastomyces/imunologia , Proteínas Fúngicas/metabolismo , Heparina/metabolismo , Ativação Linfocitária , Linfócitos T/imunologia , Animais , Antígenos de Fungos/química , Antígenos de Fungos/genética , Antígenos de Superfície/química , Antígenos de Superfície/genética , Blastomyces/química , Blastomyces/metabolismo , Blastomyces/patogenicidade , Blastomicose/imunologia , Blastomicose/metabolismo , Blastomicose/microbiologia , Antígeno CD47/química , Antígeno CD47/genética , Antígeno CD47/metabolismo , Células Cultivadas , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Humanos , Células Jurkat , Masculino , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Sequências de Repetição em Tandem , Trombospondina 1/química , Trombospondina 1/metabolismo , VirulênciaRESUMO
Vaccines may help reduce the growing incidence of fungal infections in immune-suppressed patients. We have found that, even in the absence of CD4(+) T-cell help, vaccine-induced CD8(+) T cells persist and confer resistance against Blastomyces dermatitidis and Histoplasma capsulatum. Type 1 cytokines contribute to that resistance, but they also are dispensable. Although the role of T helper 17 cells in immunity to fungi is debated, IL-17 producing CD8(+) T cells (Tc17 cells) have not been investigated. Here, we show that Tc17 cells are indispensable in antifungal vaccine immunity in hosts lacking CD4(+) T cells. Tc17 cells are induced upon vaccination, recruited to the lung on pulmonary infection, and act non-redundantly in mediating protection in a manner that requires neutrophils. Tc17 cells did not influence type I immunity, nor did the lack of IL-12 signaling augment Tc17 cells, indicating a distinct lineage and function. IL-6 was required for Tc17 differentiation and immunity, but IL-1R1 and Dectin-1 signaling was unexpectedly dispensable. Tc17 cells expressed surface CXCR3 and CCR6, but only the latter was essential in recruitment to the lung. Although IL-17 producing T cells are believed to be short-lived, effector Tc17 cells expressed low levels of KLRG1 and high levels of the transcription factor TCF-1, predicting their long-term survival and stem-cell like behavior. Our work has implications for designing vaccines against fungal infections in immune suppressed patients.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Vacinas Fúngicas/imunologia , Pneumopatias Fúngicas/imunologia , Pneumonia/imunologia , Células Th17/imunologia , Animais , Blastomyces/imunologia , Blastomyces/patogenicidade , Blastomicose/imunologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Fator 1-alfa Nuclear de Hepatócito , Histoplasma/imunologia , Histoplasma/patogenicidade , Histoplasmose/imunologia , Hospedeiro Imunocomprometido , Síndromes de Imunodeficiência/imunologia , Memória Imunológica/imunologia , Interleucina-12/biossíntese , Interleucina-17/biossíntese , Interleucina-17/imunologia , Interleucina-6/biossíntese , Interleucina-6/imunologia , Lectinas Tipo C/metabolismo , Pulmão/imunologia , Pulmão/microbiologia , Pneumopatias Fúngicas/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Pneumonia/microbiologia , Receptores CCR6/biossíntese , Receptores CCR6/metabolismo , Receptores CXCR3/biossíntese , Receptores Imunológicos/biossíntese , Transdução de Sinais , Fator 1 de Transcrição de Linfócitos T/biossínteseRESUMO
Ever since the discovery of dendritic cells by Ralph Steinman and Zanvil Cohn in 1973, it is increasingly evident that dendritic cells are integral for adaptive immune responses, and there is an undeniable focus on them for vaccines development. Fungal infections, often thought to be innocuous, are becoming significant threats due to an increased immunocompromised or immune-suppressed population and climate change. Further, the recent COVID-19 pandemic unraveled the wrath of fungal infections and devastating outcomes. Invasive fungal infections cause significant case fatality rates ranging from 20% to 90%. Regrettably, no licensed fungal vaccines exist, and there is an urgent need for preventive and therapeutic purposes. In this review, we discuss the ontogeny, subsets, tissue distribution, and functions of lung dendritic cells. In the latter part, we summarize and discuss the studies on the DC-based vaccines against pulmonary fungal infections. Finally, we highlight some emerging potential avenues that can be incorporated for DC-based vaccines against fungal infections.
RESUMO
Nontuberculous mycobacteria (NTM) are emerging opportunistic pathogens causing pulmonary infection to fatal disseminated disease. NTM infections are steadily increasing in children and adults, and immune-compromised individuals are at a greater risk of fatal infections. The NTM disease's adverse pathology and resistance to antibiotics have further worsened the therapeutic measures. Innate immune regulators are potential targets for therapeutics to NTM, especially in a T cell-suppressed population, and many ubiquitin ligases modulate pathogenesis and innate immunity during infections, including mycobacterial infections. Here, we investigated the role of an E3 ubiquitin ligase, Casitas B-lineage lymphoma proto-oncogene B (CBLB), in immunocompromised mouse models of NTM infection. We found that CBLB is essential to prevent bacterial growth and dissemination. Cblb deficiency debilitated natural killer cells, inflammatory monocytes, and macrophages in vivo. However, Cblb deficiency in macrophages did not wane its ability to inhibit bacterial growth or production of reactive oxygen species or interferon γ production by natural killer cells in vitro. CBLB restricted NTM growth and dissemination by promoting early granuloma formation in vivo. Our study shows that CBLB bolsters innate immune responses and helps prevent the dissemination of NTM during compromised T cell immunity.
Assuntos
Imunidade Inata , Infecções por Mycobacterium não Tuberculosas , Proteínas Proto-Oncogênicas c-cbl , Animais , Proteínas Proto-Oncogênicas c-cbl/deficiência , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Proteínas Proto-Oncogênicas c-cbl/genética , Camundongos , Infecções por Mycobacterium não Tuberculosas/imunologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Células Matadoras Naturais/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Micobactérias não Tuberculosas/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Granuloma/imunologia , Granuloma/microbiologia , Granuloma/patologiaRESUMO
Viral persistence during chronic viral infections is associated with a progressive loss of T-cell effector function called functional exhaustion. There is therefore a need to develop immunotherapies to remediate the functional deficits of T cells during these infections. We investigated the immunotherapeutic effects of IL-7 during chronic lymphocytic choriomeningitis virus infection in mice. Our results showed that the effects of IL-7 on T cells depend on the viral load, timing, and duration of treatment during the course of the infection. We document that the effectiveness of IL-7 was constrained by high viral load early in the infection, but treatment for at least 3 weeks during declining viral titers mitigated the programmed contraction of CD8 T cells, markedly enhanced the number of high-quality polyfunctional virus-specific CD8 T cells with a nonexhausted phenotype, and accelerated viral control. Mechanistically, the enhancement of CD8 T-cell responses by IL-7 was associated with increased proliferation and induction of Bcl-2, but not with altered levels of PD-1 or Cbl-b. In summary, our results strongly suggest that IL-7 therapy is a potential strategy to bolster the quality and quantity of T-cell responses in patients with chronic viral infections.
Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Fatores Imunológicos/uso terapêutico , Interleucina-7/uso terapêutico , Coriomeningite Linfocítica/tratamento farmacológico , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Separação Celular , Doença Crônica , Citometria de Fluxo , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Camundongos , Camundongos Endogâmicos C57BLRESUMO
In recent years, fungal vaccine research emanated significant findings in the field of antifungal T-cell immunity. The generation of effector T cells is essential to combat many mucosal and systemic fungal infections. The development of antifungal memory T cells is integral for controlling or preventing fungal infections, and understanding the factors, regulators, and modifiers that dictate the generation of such T cells is necessary. Despite the deficiency in the clear understanding of antifungal memory T-cell longevity and attributes, in this review, we will compile some of the existing literature on antifungal T-cell immunity in the context of memory T-cell development against fungal infections.
Assuntos
Vacinas Fúngicas , Micoses , Antifúngicos , Linfócitos T CD8-Positivos , Humanos , Memória ImunológicaRESUMO
GM-CSF co-expressing T17 cells instigate pathologic inflammation during autoimmune disorders, but their function in immunity to infections is unclear. Here, we demonstrate the role of GM-CSF+Tc17 cells for vaccine immunity against lethal fungal pneumonia and the cytokine requirements for their induction and memory homeostasis. Vaccine-induced GM-CSF+ Tc17 cells are necessary to bolster pulmonary fungal immunity without inflating pathology. Although GM-CSF expressing Tc17 cells preferentially elevate during the memory phase, their phenotypic attributes strongly suggest they are more like Tc17 cells than IFNγ-producing Tc1 cells. IL-1 and IL-23, but not GM-CSF, are necessary to elicit GM-CSF+ Tc17 cells following vaccination. IL-23 is dispensable for memory Tc17 and GM-CSF+ Tc17 cell maintenance, but recall responses of effector or memory Tc17 cells in the lung require it. Our study reveals the beneficial, nonpathological role of GM-CSF+ Tc17 cells during fungal vaccine immunity.
Assuntos
Pneumonia , Vacinas , Animais , Camundongos , Linfócitos T CD8-Positivos , Camundongos Endogâmicos C57BL , Pneumonia/microbiologia , Interleucina-23 , Interleucina-1RESUMO
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important pathogens affecting the global swine industry. Vaccination is still a main strategy for PRRSV control; however, host factors associated with vaccine efficacy remain poorly understood. Growing evidence suggests that mucosa-associated microbiomes may play a role in the responses to vaccination. In this study, we investigated the effects of a killed virus vaccine on the gut microbiome diversity in pigs. Fecal microbial communities were longitudinally assessed in three groups of pigs (vaccinated/challenged with PRRSV, unvaccinated/challenged with PRRSV, and unvaccinated/unchallenged) before and after vaccination and after viral challenge. We observed significant interaction effects between viral challenge and vaccination on both taxonomic richness and community diversity of the gut microbiota. While some specific taxonomic alterations appear to be enhanced in vaccinated/challenged pigs, others appeared to be more consistent with the levels in control animals (unvaccinated/unchallenged), indicating that vaccination incompletely protects against viral impacts on the microbiome. The abundances of several microbial taxa were further determined to be correlated with the level of viral load and the amount of PRRSV reactive CD4+ and CD8+ T-cells. This study highlights the potential roles of gut microbiota in the response of pigs to vaccination, which may pave the road for the development of novel strategies to enhance vaccine efficacy.
Assuntos
Microbioma Gastrointestinal , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Vacinas Virais , Animais , Linfócitos T CD8-Positivos , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Suínos , Vacinas Atenuadas , Vacinas de Produtos InativadosRESUMO
IL-7 is integral to the generation and maintenance of CD8(+) T cell memory, and insufficient IL-7 is believed to limit survival and the persistence of memory CD8(+) T cells. Here, we show that during the mouse T cell response to lymphocytic choriomeningitis virus, IL-7 enhanced the number of memory CD8(+) T cells when its administration was restricted to the contraction phase of the response. Likewise, IL-7 administration during the contraction phase of the mouse T cell response to vaccinia virus or a DNA vaccine potentiated antigen-specific CD8(+) memory T cell proliferation and function. Qualitatively, CD8(+) T cells from IL-7-treated mice exhibited superior recall responses and improved viral control. IL-7 treatment during the memory phase stimulated a marked increase in the number of memory CD8(+) T cells, but the effects were transient. IL-7 therapy during contraction of the secondary CD8(+) T cell response also expanded the pool of memory CD8(+) T cells. Collectively, our studies show differential effects of IL-7 on memory CD8(+) T cell homeostasis and underscore the importance of the timing of IL-7 therapy to effectively improve CD8(+) T cell memory and protective immunity. These findings may have implications in the clinical use of IL-7 as an immunotherapeutic agent to bolster vaccine-induced CD8(+) T cell memory.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/efeitos dos fármacos , Interleucina-7/farmacologia , Animais , Homeostase , Interleucina-7/uso terapêutico , Ativação Linfocitária/efeitos dos fármacos , Coriomeningite Linfocítica/tratamento farmacológico , Coriomeningite Linfocítica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Tempo , Fator de Necrose Tumoral alfa/biossíntese , Vacinas de DNA/imunologia , Vacinas Virais/imunologiaRESUMO
In light of PRP's increasing popularity in veterinary practice, this study aimed to compare three manual methods to prepare and cool equine PRP. The blood of 18 clinically healthy mares was collected via venipuncture in a blood transfusion bag (method 1), blood tubes (method 2), and a syringe (method 3). In method 1, samples were double centrifuged; method 2 involved one centrifugation, and in method 3 the syringe was kept in an upright position to sediment for 4 h. After processing with three methods, PRP and platelet-poor plasma (PPP) were extracted and assessed for red (RBC) and white blood cell counts (WBC), platelet counts, and viability. In a subset of mares (n = 6), samples were processed with the three methods, and PRP was evaluated at 6 and 24 h postcooling at 5 °C. Method 1 resulted in the highest and method 3 in the lowest platelet concentration (p < 0.05), and the latter also had greater contamination with WBC than the others (p < 0.001). Platelet viability was similar across treatments (p > 0.05). Cooling for 24 h did not affect platelet counts in all methods (p > 0.05); however, platelet viability was reduced after cooling PRP produced by method 3 (p = 0.04), and agglutination increased over time in all methods (p < 0.001). The three methods increased (1.8-5.6-fold) platelet concentration in PRP compared to whole blood without compromising platelet viability. In conclusion, all three methods concentrated platelets and while cooling affected their viability. It remains unknown whether the different methods and cooling would affect PRP's clinical efficacy.
RESUMO
Breast cancer remains one of the leading causes of cancer mortality in the US. Elevated cholesterol is a major risk factor for breast cancer onset and recurrence, while cholesterol-lowering drugs, such as statins, are associated with a good prognosis. Previous work in murine models showed that cholesterol increases breast cancer metastasis, and the pro-metastatic effects of cholesterol were due to its primary metabolite, 27-hydroxycholesterol (27HC). In our prior work, myeloid cells were found to be required for the pro-metastatic effects of 27HC, but their precise contribution remains unclear. Here we report that 27HC impairs T cell expansion and cytotoxic function through its actions on myeloid cells, including macrophages, in a Liver X receptor (LXR) dependent manner. Many oxysterols and LXR ligands had similar effects on T cell expansion. Moreover, their ability to induce the LXR target gene ABCA1 was associated with their effectiveness in impairing T cell expansion. Induction of T cell apoptosis was likely one mediator of this impairment. Interestingly, the enzyme responsible for the synthesis of 27HC, CYP27A1, is highly expressed in myeloid cells, suggesting that 27HC may have important autocrine or paracrine functions in these cells, a hypothesis supported by our finding that breast cancer metastasis was reduced in mice with a myeloid specific knockout of CYP27A1. Importantly, pharmacologic inhibition of CYP27A1 reduced metastatic growth and improved the efficacy of checkpoint inhibitor, anti-PD-L1. Taken together, our work suggests that targeting the CYP27A1 axis in myeloid cells may present therapeutic benefits and improve the response rate to immune therapies in breast cancer.
Assuntos
Neoplasias da Mama/patologia , Colestanotriol 26-Mono-Oxigenase/genética , Hidroxicolesteróis/efeitos adversos , Células Mieloides/metabolismo , Linfócitos T/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Colestanotriol 26-Mono-Oxigenase/metabolismo , Feminino , Técnicas de Inativação de Genes , Humanos , Receptores X do Fígado/metabolismo , Camundongos , Células Mieloides/efeitos dos fármacos , Transplante de Neoplasias , Linfócitos T/efeitos dos fármacosRESUMO
Levels of the anaphylatoxin C3a are increased in patients with asthma compared with those in nonasthmatics and increase further still during asthma exacerbations. However, the role of C3a during sensitization to allergen is poorly understood. Sensitization to fungal allergens, such as Aspergillus fumigatus, is a strong risk factor for the development of asthma. Exposure to chitin, a structural polysaccharide of the fungal cell wall, induces innate allergic inflammation and may promote sensitization to fungal allergens. Here, we found that coincubation of chitin with serum or intratracheal administration of chitin in mice resulted in the generation of C3a. We established a model of chitin-dependent sensitization to soluble Aspergillus antigens to test the contribution of complement to these events. C3(-/-) and C3aR(-/-) mice were protected from chitin-dependent sensitization to Aspergillus and had reduced lung eosinophilia and type 2 cytokines and serum IgE. In contrast, complement-deficient mice were not protected against chitin-induced innate allergic inflammation. In sensitized mice, plasmacytoid dendritic cells from complement-deficient animals acquired a tolerogenic profile associated with enhanced regulatory T cell responses and suppressed Th2 and Th17 responses specific for Aspergillus. Thus, chitin induces the generation of C3a in the lung, and chitin-dependent allergic sensitization to Aspergillus requires C3aR signaling, which suppresses regulatory dendritic cells and T cells and induces allergy-promoting T cells.
Assuntos
Aspergillus fumigatus/imunologia , Quitina/imunologia , Complemento C3/imunologia , Receptores de Complemento/imunologia , Animais , Aspergilose Broncopulmonar Alérgica/imunologia , Aspergilose Broncopulmonar Alérgica/patologia , Complemento C3/genética , Células Dendríticas/imunologia , Camundongos , Camundongos Knockout , Receptores de Complemento/genética , Linfócitos T/imunologiaRESUMO
Individuals who are immunocompromised, including AIDS patients with few CD4(+) T cells, are at increased risk for opportunistic fungal infections. The incidence of such infections is increasing worldwide, meaning that the need for antifungal vaccines is increasing. Although CD4(+) T cells play a dominant role in resistance to many pathogenic fungal infections, we have previously shown that vaccination can induce protective antifungal CD8(+) T cell immunity in the absence of CD4(+) T cells. However, it has not been determined whether vaccine-induced antifungal CD8(+) T cell memory can be maintained in the absence of CD4(+) T cell help. Here, we have shown in a mouse model of vaccination against blastomycosis that antifungal memory CD8(+) T cells are maintained in the absence of CD4(+) T cells without loss of numbers or function for at least 6 months and that the cells protect against infection. Using a system that enabled us to induce and track antigen-specific, antifungal CD8(+) T cells, we found that such cells were maintained for at least 5 months upon transfer into naive mice lacking both CD4(+) T cells and persistent fungal antigen. Additionally, fungal vaccination induced a profile of transcription factors functionally linked with persistent memory in CD8(+) T cells. Thus, unlike bacteria and viruses, fungi elicit long-term CD8(+) T cell memory that is maintained without CD4(+) T cell help or persistent antigen. This has implications for the development of novel antifungal vaccine strategies effective in immunocompromised patients.
Assuntos
Antígenos/química , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Transferência Adotiva , Alelos , Animais , Antifúngicos/farmacologia , Vacinas Anticâncer , Citocinas/metabolismo , Epitopos/química , Citometria de Fluxo/métodos , Sistema Imunitário , Memória Imunológica , Camundongos , Camundongos Endogâmicos C57BL , Risco , Fatores de Transcrição/metabolismoRESUMO
The E3 ubiquitin ligase Cbl-b is a negative regulator of TCR signaling that: 1) sets the activation threshold for T cells; 2) is induced in anergic T cells; and 3) protects against autoimmunity. However, the role of Cbl-b in regulating CD8 T cell activation and functions during physiological T cell responses has not been systematically examined. Using the lymphocytic choriomeningitis virus infection model, we show that Cbl-b deficiency did not significantly affect the clonal expansion of virus-specific CD8 T cells. However, Cbl-b deficiency not only increased the steady-state cell surface expression levels of TCR and CD8 but also reduced Ag-induced down-modulation of cell surface TCR expression by effector CD8 T cells. Diminished Ag-stimulated TCR down-modulation and sustained Ag receptor signaling induced by Cbl-b deficiency markedly augmented IFN-gamma production, which is known to require substantial TCR occupancy. By contrast, Cbl-b deficiency minimally affected cell-mediated cytotoxicity, which requires limited engagement of TCRs. Surprisingly, despite elevated expression of CD8 and reduced Ag-induced TCR down-modulation, the functional avidity of Cbl-b-deficient effector CD8 T cells was comparable to that of wild-type effectors. Collectively, these data not only show that Cbl-b-imposed constraint on TCR signaling has differential effects on various facets of CD8 T cell response but also suggest that Cbl-b might mitigate tissue injury induced by the overproduction of IFN-gamma by CD8 T cells. These findings have implications in the development of therapies to bolster CD8 T cell function during viral infections or suppress T cell-mediated immunopathology.