Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(16): 4846-51, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25831491

RESUMO

Understanding thermal transport from nanoscale heat sources is important for a fundamental description of energy flow in materials, as well as for many technological applications including thermal management in nanoelectronics and optoelectronics, thermoelectric devices, nanoenhanced photovoltaics, and nanoparticle-mediated thermal therapies. Thermal transport at the nanoscale is fundamentally different from that at the macroscale and is determined by the distribution of carrier mean free paths and energy dispersion in a material, the length scales of the heat sources, and the distance over which heat is transported. Past work has shown that Fourier's law for heat conduction dramatically overpredicts the rate of heat dissipation from heat sources with dimensions smaller than the mean free path of the dominant heat-carrying phonons. In this work, we uncover a new regime of nanoscale thermal transport that dominates when the separation between nanoscale heat sources is small compared with the dominant phonon mean free paths. Surprisingly, the interaction of phonons originating from neighboring heat sources enables more efficient diffusive-like heat dissipation, even from nanoscale heat sources much smaller than the dominant phonon mean free paths. This finding suggests that thermal management in nanoscale systems including integrated circuits might not be as challenging as previously projected. Finally, we demonstrate a unique capability to extract differential conductivity as a function of phonon mean free path in materials, allowing the first (to our knowledge) experimental validation of predictions from the recently developed first-principles calculations.

2.
Nano Lett ; 17(4): 2178-2183, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28240907

RESUMO

Precise characterization of the mechanical properties of ultrathin films is of paramount importance for both a fundamental understanding of nanoscale materials and for continued scaling and improvement of nanotechnology. In this work, we use coherent extreme ultraviolet beams to characterize the full elastic tensor of isotropic ultrathin films down to 11 nm in thickness. We simultaneously extract the Young's modulus and Poisson's ratio of low-k a-SiC:H films with varying degrees of hardness and average network connectivity in a single measurement. Contrary to past assumptions, we find that the Poisson's ratio of such films is not constant but rather can significantly increase from 0.25 to >0.4 for a network connectivity below a critical value of ∼2.5. Physically, the strong hydrogenation required to decrease the dielectric constant k results in bond breaking, lowering the network connectivity, and Young's modulus of the material but also decreases the compressibility of the film. This new understanding of ultrathin films demonstrates that coherent EUV beams present a new nanometrology capability that can probe a wide range of novel complex materials not accessible using traditional approaches.

3.
Nano Lett ; 16(8): 4773-8, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27285719

RESUMO

We use short wavelength extreme ultraviolet light to independently measure the mechanical properties of disparate layers within a bilayer film for the first time, with single-monolayer sensitivity. We show that in Ni/Ta nanostructured systems, while their density ratio is not meaningfully changed from that expected in bulk, their elastic properties are significantly modified, where nickel softens while tantalum stiffens, relative to their bulk counterparts. In particular, the presence or absence of the Ta capping layer influences the mechanical properties of the Ni film. This nondestructive nanomechanical measurement technique represents the first approach to date able to distinguish the properties of composite materials well below 100 nm in thickness. This capability is critical for understanding and optimizing the strength, flexibility and reliability of materials in a host of nanostructured electronic, photovoltaic, and thermoelectric devices.

4.
Nano Lett ; 11(10): 4126-33, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21910426

RESUMO

High-frequency surface acoustic waves can be generated by ultrafast laser excitation of nanoscale patterned surfaces. Here we study this phenomenon in the hypersonic frequency limit. By modeling the thermomechanics from first-principles, we calculate the system's initial heat-driven impulsive response and follow its time evolution. A scheme is introduced to quantitatively access frequencies and lifetimes of the composite system's excited eigenmodes. A spectral decomposition of the calculated response on the eigemodes of the system reveals asymmetric resonances that result from the coupling between surface and bulk acoustic modes. This finding allows evaluation of impulsively excited pseudosurface acoustic wave frequencies and lifetimes and expands our understanding of the scattering of surface waves in mesoscale metamaterials. The model is successfully benchmarked against time-resolved optical diffraction measurements performed on one-dimensional and two-dimensional surface phononic crystals, probed using light at extreme ultraviolet and near-infrared wavelengths.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA