Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Neurobiol Dis ; 165: 105632, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35065251

RESUMO

Tauopathies are a family of neurodegenerative diseases characterized by the presence of abnormally hyperphosphorylated Tau protein. Several studies have proposed that increased extracellular Tau (eTau) leads to the spread of cerebral tauopathy. However, the molecular mechanisms underlying eTau-induced neurotoxicity remain unclear. Previous in vitro studies reported that the ecto-enzyme tissue-nonspecific alkaline phosphatase (TNAP) dephosphorylate eTau at different sites increasing its neurotoxicity. Here, we confirm TNAP protein upregulation in the brains of Alzheimer's patients and found a similar TNAP increase in Pick's disease patients and P301S mice, a well-characterized mouse model of tauopathies. Interestingly, the conditional overexpression of TNAP causes intracellular Tau hyperphosphorylation and aggregation in cells neighbouring those overexpressing the ectoenzyme. Conversely, the genetic disruption of TNAP reduced the dephosphorylation of eTau and decreased neuronal hyperactivity, brain atrophy, and hippocampal neuronal death in P301S mice. TNAP haploinsufficiency in P301S mice prevents the decreased anxiety-like behaviour, motor deficiency, and increased memory capacity and life expectancy. Similar results were observed by the in vivo pharmacological blunting of TNAP activity. This study provides the first in vivo evidence demonstrating that raised TNAP activity is critical for Tau-induced neurotoxicity and suggest that TNAP blockade may be a novel and efficient therapy to treat tauopathies.


Assuntos
Fosfatase Alcalina , Tauopatias , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/uso terapêutico , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Expectativa de Vida , Camundongos , Camundongos Transgênicos , Tauopatias/metabolismo , Regulação para Cima , Proteínas tau/metabolismo
2.
J Pathol ; 250(1): 30-41, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31509234

RESUMO

Medial arterial calcification (MAC) is a major complication of chronic kidney disease (CKD) and an indicator of poor prognosis. Aortic overexpression of tissue-nonspecific alkaline phosphatase (TNAP) accelerates MAC formation. The present study aimed to assess whether a TNAP inhibitor, SBI-425, protects against MAC and improves survival probability in a CKD-mineral and bone disorder (MBD) mouse model. CKD-MBD mice were divided in three groups: vehicle, SBI-10, and SBI-30. They were fed a 0.2% adenine and 0.8% phosphorus diet from 14 to 20 weeks of age to induce CKD, followed by a high-phosphorus (0.2% adenine and 1.8% phosphorus) diet for another 6 weeks. At 14-20 weeks of age, mice in the SBI-10 and SBI-30 groups were given 10 and 30 mg/kg SBI-425 by gavage once a day, respectively, while vehicle-group mice were given distilled water as vehicle. Control mice were fed a standard chow (0.8% phosphorus) between the ages of 8 and 20 weeks. Computed tomography imaging, histology, and aortic tissue calcium content revealed that, compared to vehicle animals, SBI-425 nearly halted the formation of MAC. Mice in the control, SBI-10 and SBI-30 groups exhibited 100% survival, which was significantly better than vehicle-treated mice (57.1%). Aortic mRNA expression of Alpl, encoding TNAP, as well as plasma and aortic tissue TNAP activity, were suppressed by SBI-425 administration, whereas plasma pyrophosphate increased. We conclude that a TNAP inhibitor successfully protected the vasculature from MAC and improved survival rate in a mouse CKD-MBD model, without causing any adverse effects on normal skeletal formation and residual renal function. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Fosfatase Alcalina/antagonistas & inibidores , Aorta/efeitos dos fármacos , Doenças da Aorta/prevenção & controle , Distúrbio Mineral e Ósseo na Doença Renal Crônica/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Niacinamida/análogos & derivados , Sulfonamidas/farmacologia , Calcificação Vascular/prevenção & controle , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Aorta/enzimologia , Aorta/patologia , Doenças da Aorta/enzimologia , Doenças da Aorta/etiologia , Doenças da Aorta/patologia , Distúrbio Mineral e Ósseo na Doença Renal Crônica/complicações , Distúrbio Mineral e Ósseo na Doença Renal Crônica/enzimologia , Distúrbio Mineral e Ósseo na Doença Renal Crônica/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/patologia , Niacinamida/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/enzimologia , Osteoblastos/patologia , Fatores de Tempo , Calcificação Vascular/enzimologia , Calcificação Vascular/etiologia , Calcificação Vascular/patologia
3.
Kidney Blood Press Res ; 43(5): 1409-1424, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30212831

RESUMO

BACKGROUND/AIMS: Hyperphosphatemia is a serious complication of late-stage chronic kidney disease (CKD). Intestinal inorganic phosphate (Pi) handling plays an important role in Pi homeostasis in CKD. We investigated whether intestinal alkaline phosphatase 3 (Akp3), the enzyme that hydrolyzes dietary Pi compounds, is a target for the treatment of hyperphosphatemia in CKD. METHODS: We investigated Pi homeostasis in Akp3 knockout mice (Akp3-/-). We also studied the progression of renal failure in an Akp3-/- mouse adenine treated renal failure model. Plasma, fecal, and urinary Pi and Ca concentration were measured with commercially available kit, and plasma fibroblast growth factor 23, parathyroid hormone, and 1,25(OH)2D3 concentration were measured with ELISA. Brush border membrane vesicles were prepared from mouse intestine using the Ca2+ precipitation method and used for Pi transport activity and alkaline phosphatase activity. In vivo intestinal Pi absorption was measured with oral 32P administration. RESULTS: Akp3-/- mice exhibited reduced intestinal type II sodium-dependent Pi transporter (Npt2b) protein levels and Na-dependent Pi co-transport activity. In addition, plasma active vitamin D levels were significantly increased in Akp3-/- mice compared with wild-type animals. In the adenine-induced renal failure model, Akp3 gene deletion suppressed hyperphosphatemia. CONCLUSION: The present findings indicate that intestinal Akp3 deletion affects Na+-dependent Pi transport in the small intestine. In the adenine-induced renal failure model, Akp3 is predicted to be a factor contributing to suppression of the plasma Pi concentration.


Assuntos
Fosfatase Alcalina/fisiologia , Homeostase , Fosfatos/metabolismo , Insuficiência Renal/metabolismo , Fosfatase Alcalina/genética , Animais , Transporte Biológico , Modelos Animais de Doenças , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Knockout , Fosfatos/sangue , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/metabolismo
4.
Calcif Tissue Int ; 101(1): 92-101, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28303318

RESUMO

Phosphorylated osteopontin (OPN) inhibits hydroxyapatite crystal formation and growth, and bone alkaline phosphatase (BALP) promotes extracellular mineralization via the release of inorganic phosphate from the mineralization inhibitor inorganic pyrophosphate (PPi). Tartrate-resistant acid phosphatase (TRAP), produced by osteoclasts, osteoblasts, and osteocytes, exhibits potent phosphatase activity towards OPN; however, its potential capacity as a regulator of mineralization has not previously been addressed. We compared the efficiency of BALP and TRAP towards the endogenous substrates for BALP, i.e., PPi and pyridoxal 5'-phosphate (PLP), and their impact on mineralization in vitro via dephosphorylation of bovine milk OPN. TRAP showed higher phosphatase activity towards phosphorylated OPN and PPi compared to BALP, whereas the activity of TRAP and BALP towards PLP was comparable. Bovine milk OPN could be completely dephosphorylated by TRAP, liberating all its 28 phosphates, whereas BALP dephosphorylated at most 10 phosphates. OPN, dephosphorylated by either BALP or TRAP, showed a partially or completely attenuated phosphorylation-dependent inhibitory capacity, respectively, compared to native OPN on the formation of mineralized nodules. Thus, there are phosphorylations in OPN important for inhibition of mineralization that are removed by TRAP but not by BALP. In conclusion, our data indicate that both BALP and TRAP can alleviate the inhibitory effect of OPN on mineralization, suggesting a potential role for TRAP in skeletal mineralization. Further studies are warranted to explore the possible physiological relevance of TRAP in bone mineralization.


Assuntos
Fosfatase Alcalina/metabolismo , Calcificação Fisiológica/fisiologia , Fosfatase Ácida Resistente a Tartarato/metabolismo , Animais , Bovinos , Linhagem Celular , Difosfatos/metabolismo , Humanos , Osteoblastos/metabolismo , Osteopontina/metabolismo
5.
Subcell Biochem ; 76: 45-57, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26219706

RESUMO

Genetically modified mice are powerful tools for understanding the functions of genes and proteins and often serve as models of human disease. Here, several knockout and transgenic mouse lines related to tissue-nonspecific alkaline phosphatase (TNAP) are described. Conventional TNAP knockout mice die before weaning and show vitamin B6 dependent epilepsy and impaired bone mineralization, mimicking infantile hypophosphatasia. Administration of recombinant human TNAP rescues the lethal phenotype and improves bone mineralization in the null knockout mice, and this enzyme replacement therapy has been successfully applied to the treatment of human patients. Transgenic expression of human TNAP also rescues the TNAP knockout mice. Studies of the TNAP knockout mice and their double knockouts with ectonucleotide pyrophosphatase/phosphodiesterase 1 or progressive ankylosis protein revealed that pyridoxal phosphate and inorganic pyrophosphate are natural substrates of TNAP. Bone osteopontin from TNAP knockout mice is highly phosphorylated, whereas osteopontin from TNAP knockout mice expressing human TNAP is de-phosphorylated, similar to that in wild type mice, indicating that osteopontin is also a natural substrate of TNAP and that phosphorylated osteopontin contributes the impaired bone mineralization in TNAP knockout mice. Conditional TNAP knockout mice and TNAP mutants produced by ENU (N-ethyl-N-nitrosourea) mutagenesis show milder hypophosphatasia and are expected to be useful models of adult hypophosphatasia.


Assuntos
Fosfatase Alcalina/fisiologia , Modelos Animais de Doenças , Hipofosfatasia/genética , Camundongos Transgênicos , Adulto , Fosfatase Alcalina/genética , Animais , Humanos , Hipofosfatasia/patologia , Camundongos , Camundongos Knockout
6.
Proc Natl Acad Sci U S A ; 110(17): 7003-8, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23569246

RESUMO

Metabolic syndrome comprises a cluster of related disorders that includes obesity, glucose intolerance, insulin resistance, dyslipidemia, and fatty liver. Recently, gut-derived chronic endotoxemia has been identified as a primary mediator for triggering the low-grade inflammation responsible for the development of metabolic syndrome. In the present study we examined the role of the small intestinal brush-border enzyme, intestinal alkaline phosphatase (IAP), in preventing a high-fat-diet-induced metabolic syndrome in mice. We found that both endogenous and orally supplemented IAP inhibits absorption of endotoxin (lipopolysaccharides) that occurs with dietary fat, and oral IAP supplementation prevents as well as reverses metabolic syndrome. Furthermore, IAP supplementation improves the lipid profile in mice fed a standard, low-fat chow diet. These results point to a potentially unique therapy against metabolic syndrome in at-risk humans.


Assuntos
Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/farmacologia , Síndrome Metabólica/tratamento farmacológico , Absorção/efeitos dos fármacos , Administração Oral , Fosfatase Alcalina/administração & dosagem , Fosfatase Alcalina/genética , Animais , Compostos Azo , Linhagem Celular , Primers do DNA/genética , Lipopolissacarídeos , Fígado/metabolismo , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microvilosidades/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Triglicerídeos/metabolismo
7.
Kidney Int ; 85(6): 1351-6, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24717293

RESUMO

Plasma levels of pyrophosphate, an endogenous inhibitor of vascular calcification, are reduced in end-stage renal disease and correlate inversely with arterial calcification. However, it is not known whether the low plasma levels are directly pathogenic or are merely a marker of reduced tissue levels. This was tested in an animal model in which aortas were transplanted between normal mice and Enpp1(-/-) mice lacking ectonucleotide pyrophosphatase phosphodiesterase, the enzyme that synthesizes extracellular pyrophosphate. Enpp1(-/-) mice had very low plasma pyrophosphate and developed aortic calcification by 2 months that was greatly accelerated with a high-phosphate diet. Aortas of Enpp1(-/-) mice showed no further calcification after transplantation into wild-type mice fed a high-phosphate diet. Aorta allografts of wild-type mice calcified in Enpp1(-/-) mice but less so than the adjacent recipient Enpp1(-/-) aorta. Donor and recipient aortic calcium contents did not differ in transplants between wild-type and Enpp1(-/-) mice, demonstrating that transplantation per se did not affect calcification. Histology revealed medial calcification with no signs of rejection. Thus, normal levels of extracellular pyrophosphate are sufficient to prevent vascular calcification, and systemic Enpp1 deficiency is sufficient to produce vascular calcification despite normal vascular extracellular pyrophosphate production. This establishes an important role for circulating extracellular pyrophosphate in preventing vascular calcification.


Assuntos
Aorta/metabolismo , Doenças da Aorta/sangue , Difosfatos/sangue , Calcificação Vascular/sangue , Animais , Aorta/patologia , Aorta/transplante , Doenças da Aorta/genética , Doenças da Aorta/patologia , Doenças da Aorta/prevenção & controle , Cálcio/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Camundongos Endogâmicos C57BL , Camundongos Knockout , Diester Fosfórico Hidrolases/deficiência , Diester Fosfórico Hidrolases/genética , Fósforo na Dieta/efeitos adversos , Pirofosfatases/deficiência , Pirofosfatases/genética , Fatores de Tempo , Calcificação Vascular/genética , Calcificação Vascular/patologia , Calcificação Vascular/prevenção & controle
8.
Am J Physiol Gastrointest Liver Physiol ; 306(10): G826-38, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24722905

RESUMO

The intestinal microbiota plays a pivotal role in maintaining human health and well-being. Previously, we have shown that mice deficient in the brush-border enzyme intestinal alkaline phosphatase (IAP) suffer from dysbiosis and that oral IAP supplementation normalizes the gut flora. Here we aimed to decipher the molecular mechanism by which IAP promotes bacterial growth. We used an isolated mouse intestinal loop model to directly examine the effect of exogenous IAP on the growth of specific intestinal bacterial species. We studied the effects of various IAP targets on the growth of stool aerobic and anaerobic bacteria as well as on a few specific gut organisms. We determined the effects of ATP and other nucleotides on bacterial growth. Furthermore, we examined the effects of IAP on reversing the inhibitory effects of nucleotides on bacterial growth. We have confirmed that local IAP bioactivity creates a luminal environment that promotes the growth of a wide range of commensal organisms. IAP promotes the growth of stool aerobic and anaerobic bacteria and appears to exert its growth promoting effects by inactivating (dephosphorylating) luminal ATP and other luminal nucleotide triphosphates. We observed that compared with wild-type mice, IAP-knockout mice have more ATP in their luminal contents, and exogenous IAP can reverse the ATP-mediated inhibition of bacterial growth in the isolated intestinal loop. In conclusion, IAP appears to promote the growth of intestinal commensal bacteria by inhibiting the concentration of luminal nucleotide triphosphates.


Assuntos
Fosfatase Alcalina/fisiologia , Intestinos/microbiologia , Trifosfato de Adenosina/farmacologia , Fosfatase Alcalina/antagonistas & inibidores , Fosfatase Alcalina/genética , Fosfatase Alcalina/farmacologia , Ampicilina/farmacologia , Animais , Desoxirribonucleotídeos/farmacologia , Farmacorresistência Bacteriana , Enterococcus faecalis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Fezes/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morganella morganii/efeitos dos fármacos , Fenilalanina/farmacologia , Inanição/fisiopatologia , Estreptomicina/farmacologia
9.
Ann Surg ; 260(4): 706-14; discussion 714-5, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25203888

RESUMO

OBJECTIVE: To determine the role of intestinal alkaline phosphatase (IAP) in enteral starvation-induced gut barrier dysfunction and to study its therapeutic effect as a supplement to prevent gut-derived sepsis. BACKGROUND: Critically ill patients are at increased risk for systemic sepsis and, in some cases, multiorgan failure leading to death. Years ago, the gut was identified as a major source for this systemic sepsis syndrome. Previously, we have shown that IAP detoxifies bacterial toxins, prevents endotoxemia, and preserves intestinal microbiotal homeostasis. METHODS: WT and IAP-KO mice were used to examine gut barrier function and tight junction protein levels during 48-hour starvation and fed states. Human ileal fluid samples were collected from 20 patients postileostomy and IAP levels were compared between fasted and fed states. To study the effect of IAP supplementation on starvation-induced gut barrier dysfunction, WT mice were fasted for 48 hours +/- IAP supplementation in the drinking water. RESULTS: The loss of IAP expression is associated with decreased expression of intestinal junctional proteins and impaired barrier function. For the first time, we demonstrate that IAP expression is also decreased in humans who are deprived of enteral feeding. Finally, our data demonstrate that IAP supplementation reverses the gut barrier dysfunction and tight junction protein losses due to a lack of enteral feeding. CONCLUSIONS: IAP is a major regulator of gut mucosal permeability and is able to ameliorate starvation-induced gut barrier dysfunction. Enteral IAP supplementation may represent a novel approach to maintain bowel integrity in critically ill patients.


Assuntos
Fosfatase Alcalina/administração & dosagem , Fosfatase Alcalina/metabolismo , Estado Terminal , Suplementos Nutricionais , Mucosa Intestinal/enzimologia , Síndrome de Resposta Inflamatória Sistêmica/prevenção & controle , Administração Oral , Animais , Nutrição Enteral , Humanos , Íleo/enzimologia , Íleo/imunologia , Inflamação/enzimologia , Jejuno/enzimologia , Jejuno/imunologia , Camundongos , Permeabilidade , Inanição , Proteínas de Junções Íntimas/metabolismo , Regulação para Cima
10.
Am J Physiol Heart Circ Physiol ; 307(6): H933-8, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25015959

RESUMO

We have previously reported that Zn(2+) infused into the coronary arteries of isolated rat hearts leads to the potent dephosphorylation of phospholamban (PLB) as well as a noticeable but less potent dephosphorylation of the ryanodine receptor 2. We hypothesized in the present study that a Zn(2+)-activated phosphatase is located in the vicinity of the sarcoplasmic reticulum (SR) where PLB and ryanodine receptor 2 reside. We report here the novel finding of tissue-nonspecific alkaline phosphatase (TNAP), a zinc-dependent enzyme, localized to the SR in the cardiac sarcomere of mouse myocardium. TNAP activity was enhanced by injection of Zn acetate into a tail vein before harvesting the heart and imaged using electron microscopy of electron dense deposits indicative of the hydrolysis of exogenous ß-glycerophosphate. TNAP activity was observed localized to the ends of the Z-line corresponding to SR and was qualitatively more visible in myocardium of males compared with females. Correspondingly, PLB phosphorylation status was potently reduced in myocardium of males injected with Zn acetate, whereas there was no apparent effect of Zn acetate injection on PLB phosphorylation in females. Surprisingly, Western blot analysis of TNAP content suggested a significantly lower TNAP content in males compared with females. These data suggest that TNAP plays a role in governing the phosphorylation status of calcium handling proteins in the SR. Furthermore, the content and activity of TNAP are differentially regulated between the sexes and thus may account for some sex differences in cardiopathologies associated with calcium handling.


Assuntos
Fosfatase Alcalina/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Sarcômeros/efeitos dos fármacos , Acetato de Zinco/farmacologia , Animais , Cálcio/metabolismo , Feminino , Injeções Intravenosas , Masculino , Camundongos , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/ultraestrutura , Fosforilação , Sarcômeros/enzimologia , Sarcômeros/ultraestrutura , Fatores Sexuais , Acetato de Zinco/administração & dosagem
11.
Bioorg Med Chem Lett ; 24(3): 1000-1004, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24412070

RESUMO

Alkaline phosphatase (AP) isozymes are present in a wide range of species from bacteria to man and are capable of dephosphorylation and transphosphorylation of a wide spectrum of substrates in vitro. In humans, four AP isozymes have been identified-one tissue-nonspecific (TNAP) and three tissue-specific-named according to the tissue of their predominant expression: intestinal (IAP), placental (PLAP) and germ cell (GCAP) APs. Modulation of activity of the different AP isozymes may have therapeutic implications in distinct diseases and cellular processes. For instance, changes in the level of IAP activity can affect gut mucosa tolerance to microbial invasion due to the ability of IAP to detoxify bacterial endotoxins, alter the absorption of fatty acids and affect ectopurinergic regulation of duodenal bicarbonate secretion. To identify isozyme selective modulators of the human and mouse IAPs, we developed a series of murine duodenal IAP (Akp3-encoded dIAP isozyme), human IAP (hIAP), PLAP, and TNAP assays. High throughput screening and subsequent SAR efforts generated a potent inhibitor of dIAP, ML260, with specificity for the Akp3-, compared to the Akp5- and Akp6-encoded mouse isozymes.


Assuntos
Acetanilidas/química , Acetanilidas/farmacologia , Fosfatase Alcalina/antagonistas & inibidores , Sulfonamidas/química , Sulfonamidas/farmacologia , Acetanilidas/isolamento & purificação , Animais , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Humanos , Camundongos , Isoformas de Proteínas/química , Sulfonamidas/isolamento & purificação
12.
JBMR Plus ; 8(2): ziae006, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38505526

RESUMO

Tissue-nonspecific alkaline phosphatase (TNALP) is a glycoprotein expressed by osteoblasts that promotes bone mineralization. TNALP catalyzes the hydrolysis of the mineralization inhibitor inorganic pyrophosphate and ATP to provide inorganic phosphate, thus controlling the inorganic pyrophosphate/inorganic phosphate ratio to enable the growth of hydroxyapatite crystals. N-linked glycosylation of TNALP is essential for protein stability and enzymatic activity and is responsible for the presence of different bone isoforms of TNALP associated with functional and clinical differences. The site-specific glycosylation profiles of TNALP are, however, elusive. TNALP has 5 potential N-glycosylation sites located at the asparagine (N) residues 140, 230, 271, 303, and 430. The objective of this study was to reveal the presence and structure of site-specific glycosylation in TNALP expressed in osteoblasts. Calvarial osteoblasts derived from Alpl+/- expressing SV40 Large T antigen were transfected with soluble epitope-tagged human TNALP. Purified TNALP was analyzed with a lectin microarray, matrix-assisted laser desorption/ionization-time of flight mass spectrometry, and liquid chromatography with tandem mass spectrometry. The results showed that all sites (n = 5) were fully occupied predominantly with complex-type N-glycans. High abundance of galactosylated biantennary N-glycans with various degrees of sialylation was observed on all sites, as well as glycans with no terminal galactose and sialic acid. Furthermore, all sites had core fucosylation except site N271. Modelling of TNALP, with the protein structure prediction software ColabFold, showed possible steric hindrance by the adjacent side chain of W270, which could explain the absence of core fucosylation at N271. These novel findings provide evidence for N-linked glycosylation on all 5 sites of TNALP, as well as core fucosylation on 4 out of 5 sites. We anticipate that this new knowledge can aid in the development of functional and clinical assays specific for the TNALP bone isoforms.

13.
Am J Physiol Gastrointest Liver Physiol ; 304(6): G597-604, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23306083

RESUMO

Uridine diphosphate (UDP) is a proinflammatory nucleotide implicated in inflammatory bowel disease. Intestinal alkaline phosphatase (IAP) is a gut mucosal defense factor capable of inhibiting intestinal inflammation. We used the malachite green assay to show that IAP dephosphorylates UDP. To study the anti-inflammatory effect of IAP, UDP or other proinflammatory ligands (LPS, flagellin, Pam3Cys, or TNF-α) in the presence or absence of IAP were applied to cell cultures, and IL-8 was measured. UDP caused dose-dependent increase in IL-8 release by immune cells and two gut epithelial cell lines, and IAP treatment abrogated IL-8 release. Costimulation with UDP and other inflammatory ligands resulted in a synergistic increase in IL-8 release, which was prevented by IAP treatment. In vivo, UDP in the presence or absence of IAP was instilled into a small intestinal loop model in wild-type and IAP-knockout mice. Luminal contents were applied to cell culture, and cytokine levels were measured in culture supernatant and intestinal tissue. UDP-treated luminal contents induced more inflammation on target cells, with a greater inflammatory response to contents from IAP-KO mice treated with UDP than from WT mice. Additionally, UDP treatment increased TNF-α levels in intestinal tissue of IAP-KO mice, and cotreatment with IAP reduced inflammation to control levels. Taken together, these studies show that IAP prevents inflammation caused by UDP alone and in combination with other ligands, and the anti-inflammatory effect of IAP against UDP persists in mouse small intestine. The benefits of IAP in intestinal disease may be partly due to inhibition of the proinflammatory activity of UDP.


Assuntos
Fosfatase Alcalina/metabolismo , Modelos Animais de Doenças , Mediadores da Inflamação , Doenças Inflamatórias Intestinais , Intestino Delgado/metabolismo , Difosfato de Uridina/metabolismo , Animais , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Células Cultivadas , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Interleucina-8/análise , Interleucina-8/metabolismo , Mucosa Intestinal/imunologia , Lipopolissacarídeos/metabolismo , Camundongos , Camundongos Knockout , Receptores Purinérgicos P2/metabolismo
14.
Cell Tissue Bank ; 14(1): 33-44, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22323112

RESUMO

Bone graft substitutes have become an essential component in a number of orthopedic applications. Autologous bone has long been the gold standard for bone void fillers. However, the limited supply and morbidity associated with using autologous graft material has led to the development of many different bone graft substitutes. Allogeneic demineralized bone matrix (DBM) has been used extensively to supplement autograft bone because of its inherent osteoconductive and osteoinductive properties. Synthetic and natural bone graft substitutes that do not contain growth factors are considered to be osteoconductive only. Bioactive glass has been shown to facilitate graft containment at the operative site as well as activate cellular osteogenesis. In the present study, we present the results of a comprehensive in vitro and in vivo characterization of a combination of allogeneic human bone and bioactive glass bone void filler, NanoFUSE(®) DBM. NanoFUSE(®) DBM is shown to be biocompatible in a number of different assays and has been cleared by the FDA for use in bone filling indications. Data are presented showing the ability of the material to support cell attachment and proliferation on the material thereby demonstrating the osteoconductive nature of the material. NanoFUSE(®) DBM was also shown to be osteoinductive in the mouse thigh muscle model. These data demonstrate that the DBM and bioactive glass combination, NanoFUSE(®) DBM, could be an effective bone graft substitute.


Assuntos
Materiais Biocompatíveis/farmacologia , Matriz Óssea/química , Substitutos Ósseos/farmacologia , Calcificação Fisiológica/efeitos dos fármacos , Osseointegração/efeitos dos fármacos , Fosfatase Alcalina/metabolismo , Animais , Matriz Óssea/ultraestrutura , Adesão Celular/efeitos dos fármacos , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Gelatina/farmacologia , Cobaias , Humanos , Camundongos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/enzimologia , Osteogênese/efeitos dos fármacos , Coelhos
15.
JBMR Plus ; 7(1): e10709, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36699639

RESUMO

Hypophosphatasia (HPP), caused by loss-of-function mutations in the ALPL gene encoding tissue-nonspecific alkaline phosphatase (TNAP), is characterized by skeletal and dental hypomineralization that can vary in severity from life-threatening to milder manifestations only in adulthood. PHOSPHO1 deficiency leads to early-onset scoliosis, osteomalacia, and fractures that mimic pseudo-HPP. Asfotase alfa, a life-saving enzyme replacement therapy approved for pediatric-onset HPP, requires subcutaneous injections 3 to 6 times per week. We recently showed that a single injection of an adeno-associated virus vector serotype 8 harboring TNAP-D10 (AAV8-TNAP-D10) effectively prevented skeletal disease and prolonged life in Alpl -/- mice phenocopying infantile HPP. Here, we aimed to determine the efficacy of AAV8-TNAP-D10 in improving the skeletal and dental phenotype in the Alpl Prx1/Prx1 and Phospho1 -/- mouse models of late-onset (adult) HPP and pseudo-HPP, respectively. A single dose of 3 × 1011 vector genomes per body (vg/b) was injected intramuscularly into 8-week-old Alpl Prx1/Prx1 and wild-type (WT) littermates, or into 3-day-old Phospho1 -/- and WT mice, and treatment efficacy was evaluated after 60 days for late-onset HPP mice and after 90 days for Phospho1 -/- mice. Biochemical analysis showed sustained serum alkaline phosphatase activity and reduced plasma PPi levels, and radiographic images, micro-computed tomography (micro-CT) analysis, and hematoxylin and eosin (H&E) staining showed improvements in the long bones in the late-onset HPP mice and corrected scoliosis in the Phospho1 -/- mice. Micro-CT analysis of the dentoalveolar complex did not reveal significant changes in the phenotype of late-onset HPP and pseudo-HPP models. Moreover, alizarin red staining analysis showed that AAV8-TNAP-D10 treatment did not promote ectopic calcification of soft organs in adult HPP mice after 60 days of treatment, even after inducing chronic kidney disease. Overall, the AAV8-TNAP-D10 treatment improved the skeletal phenotype in both the adult HPP and pseudo-HPP mouse models. This preclinical study will contribute to the advancement of gene therapy for the improvement of skeletal disease in patients with heritable forms of osteomalacia. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

16.
J Bone Miner Res ; 38(8): 1192-1207, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37191192

RESUMO

Chronic kidney disease (CKD) is characterized by kidney damage and loss of renal function. CKD mineral and bone disorder (CKD-MBD) describes the dysregulation of mineral homeostasis, including hyperphosphatemia and elevated parathyroid hormone (PTH) secretion, skeletal abnormalities, and vascular calcification. CKD-MBD impacts the oral cavity, with effects including salivary gland dysfunction, enamel hypoplasia and damage, increased dentin formation, decreased pulp volume, pulp calcifications, and altered jaw bones, contributing to clinical manifestations of periodontal disease and tooth loss. Underlying mechanisms are not fully understood, and CKD mouse models commonly require invasive procedures with high rates of infection and mortality. We aimed to characterize the dentoalveolar effects of an adenine diet (AD)-induced CKD (AD-CKD) mouse model. Eight-week-old C57BL/6J mice were provided either a normal phosphorus diet control (CTR) or adenine and high-phosphorus diet CKD to induce kidney failure. Mice were euthanized at 15 weeks old, and mandibles were collected for micro-computed tomography and histology. CKD mice exhibited kidney failure, hyperphosphatemia, and hyperparathyroidism in association with porous cortical bone in femurs. CKD mice showed a 30% decrease in molar enamel volume compared to CTR mice. Enamel wear was associated with reduced ductal components, ectopic calcifications, and altered osteopontin (OPN) deposition in submandibular salivary glands of CKD mice. Molar cusps in CKD mice were flattened, exposing dentin. Molar dentin/cementum volume increased 7% in CKD mice and pulp volume decreased. Histology revealed excessive reactionary dentin and altered pulp-dentin extracellular matrix proteins, including increased OPN. Mandibular bone volume fraction decreased 12% and bone mineral density decreased 9% in CKD versus CTR mice. Alveolar bone in CKD mice exhibited increased tissue-nonspecific alkaline phosphatase localization, OPN deposition, and greater osteoclast numbers. AD-CKD recapitulated key aspects reported in CKD patients and revealed new insights into CKD-associated oral defects. This model has potential for studying mechanisms of dentoalveolar defects or therapeutic interventions. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Distúrbio Mineral e Ósseo na Doença Renal Crônica , Hiperfosfatemia , Insuficiência Renal Crônica , Camundongos , Animais , Distúrbio Mineral e Ósseo na Doença Renal Crônica/complicações , Adenina , Microtomografia por Raio-X , Hiperfosfatemia/complicações , Camundongos Endogâmicos C57BL , Insuficiência Renal Crônica/complicações , Fósforo
17.
Front Dent Med ; 32022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36185572

RESUMO

Mineralization of the skeleton occurs by several physicochemical and biochemical processes and mechanisms that facilitate the deposition of hydroxyapatite (HA) in specific areas of the extracellular matrix (ECM). Two key phosphatases, phosphatase, orphan 1 (PHOSPHO1) and tissue-non-specific alkaline phosphatase (TNAP), play complementary roles in the mineralization process. The actions of PHOSPHO1 on phosphocholine and phosphoethanolamine in matrix vesicles (MVs) produce inorganic phosphate (Pi) for the initiation of HA mineral formation within MVs. TNAP hydrolyzes adenosine triphosphate (ATP) and the mineralization inhibitor, inorganic pyrophosphate (PPi), to generate Pi that is incorporated into MVs. Genetic mutations in the ALPL gene-encoding TNAP lead to hypophosphatasia (HPP), characterized by low circulating TNAP levels (ALP), rickets in children and/or osteomalacia in adults, and a spectrum of dentoalveolar defects, the most prevalent being lack of acellular cementum leading to premature tooth loss. Given that the skeletal manifestations of genetic ablation of the Phospho1 gene in mice resemble many of the manifestations of HPP, we propose that Phospho1 gene mutations may underlie some cases of "pseudo-HPP" where ALP may be normal to subnormal, but ALPL mutation(s) have not been identified. The goal of this perspective article is to compare and contrast the loss-of-function effects of TNAP and PHOSPHO1 on the dentoalveolar complex to predict the likely dental phenotype in humans that may result from PHOSPHO1 mutations. Potential cases of pseudo-HPP associated with PHOSPHO1 mutations may resist diagnosis, and the dental manifestations could be a key criterion for consideration.

18.
J Biol Chem ; 285(10): 7598-609, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20048161

RESUMO

We have established a proteoliposome system as an osteoblast-derived matrix vesicle (MV) biomimetic to facilitate the study of the interplay of tissue-nonspecific alkaline phosphatase (TNAP) and NPP1 (nucleotide pyrophosphatase/phosphodiesterase-1) during catalysis of biomineralization substrates. First, we studied the incorporation of TNAP into liposomes of various lipid compositions (i.e. in pure dipalmitoyl phosphatidylcholine (DPPC), DPPC/dipalmitoyl phosphatidylserine (9:1 and 8:2), and DPPC/dioctadecyl-dimethylammonium bromide (9:1 and 8:2) mixtures. TNAP reconstitution proved virtually complete in DPPC liposomes. Next, proteoliposomes containing either recombinant TNAP, recombinant NPP1, or both together were reconstituted in DPPC, and the hydrolysis of ATP, ADP, AMP, pyridoxal-5'-phosphate (PLP), p-nitrophenyl phosphate, p-nitrophenylthymidine 5'-monophosphate, and PP(i) by these proteoliposomes was studied at physiological pH. p-Nitrophenylthymidine 5'-monophosphate and PLP were exclusively hydrolyzed by NPP1-containing and TNAP-containing proteoliposomes, respectively. In contrast, ATP, ADP, AMP, PLP, p-nitrophenyl phosphate, and PP(i) were hydrolyzed by TNAP-, NPP1-, and TNAP plus NPP1-containing proteoliposomes. NPP1 plus TNAP additively hydrolyzed ATP, but TNAP appeared more active in AMP formation than NPP1. Hydrolysis of PP(i) by TNAP-, and TNAP plus NPP1-containing proteoliposomes occurred with catalytic efficiencies and mild cooperativity, effects comparable with those manifested by murine osteoblast-derived MVs. The reconstitution of TNAP and NPP1 into proteoliposome membranes generates a phospholipid microenvironment that allows the kinetic study of phosphosubstrate catabolism in a manner that recapitulates the native MV microenvironment.


Assuntos
Fosfatase Alcalina/metabolismo , Biomimética , Calcificação Fisiológica/fisiologia , Proteolipídeos , Pirofosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Fosfatase Alcalina/genética , Animais , Catálise , Células Cultivadas , Glicosilfosfatidilinositóis/metabolismo , Humanos , Lipídeos/química , Camundongos , Osteoblastos/citologia , Osteoblastos/fisiologia , Polidocanol , Polietilenoglicóis/química , Proteolipídeos/química , Proteolipídeos/metabolismo , Pirofosfatases/genética , Ratos
19.
Am J Physiol Regul Integr Comp Physiol ; 301(6): R1738-47, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21900644

RESUMO

The mechanisms of the saturable component of long-chain fatty acid (LCFA) transport across the small intestinal epithelium and its regulation by a high-fat diet (HFD) are uncertain. It is hypothesized here that the putative fatty acid translocase/CD36 and intestinal alkaline phosphatases (IAPs) function together to optimize LCFA transport. Phosphorylated CD36 (pCD36) was expressed in mouse enterocytes and dephosphorylated by calf IAP (CIAP). Uptake of fluorescently tagged LCFA into isolated enteroctyes was increased when cells were treated with CIAP; this was blocked with a specific CD36 inhibitor. pCD36 colocalized in enterocytes with the global IAP (gIAP) isozyme and, specifically, coimmunoprecipitated with gIAP, but not the duodenal-specific isozyme (dIAP). Purified recombinant gIAP dephosphorylated immunoprecipitated pCD36, and antiserum to gIAP decreased initial LCFA uptake in enterocytes. Body weight, adiposity, and plasma leptin and triglycerides were significantly increased in HFD mice compared with controls fed a normal-fat diet. HFD significantly increased immunoreactive CD36 and gIAP, but not dIAP, in jejunum, but not duodenum. Uptake of LCFA was increased in a CD36-dependent manner in enterocytes from HFD mice. It is concluded that CD36 exists in its phosphorylated and dephosphorylated states in mouse enterocytes, that pCD36 is a substrate of gIAP, and that dephosphorylation by IAPs results in increased LCFA transport capability. HFD upregulates CD36 and gIAP in parallel and enhances CD36-dependent fatty acid uptake. The interactions between these proteins may be important for efficient fat transport in mouse intestine, but whether the changes in gIAP and CD36 in enterocytes contribute to HFD-induced obesity remains to be determined.


Assuntos
Fosfatase Alcalina/metabolismo , Antígenos CD36/metabolismo , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/farmacologia , Regulação da Expressão Gênica/fisiologia , Intestino Delgado/metabolismo , Fosfatase Alcalina/genética , Animais , Antígenos CD36/genética , Células CHO , Células Cultivadas , Cricetinae , Enterócitos/citologia , Enterócitos/metabolismo , Isoenzimas , Masculino , Camundongos , Camundongos Endogâmicos C57BL
20.
Proc Natl Acad Sci U S A ; 105(9): 3551-6, 2008 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-18292227

RESUMO

Under conditions of starvation and disease, the gut barrier becomes impaired, and trophic feeding to prevent gut mucosal atrophy has become a standard treatment of critically ill patients. However, the mechanisms responsible for the beneficial effects of enteral nutrition have remained a mystery. Using in vitro and in vivo models, we demonstrate that the brush-border enzyme, intestinal alkaline phosphatase (IAP), has the ability to detoxify lipopolysaccharide and prevent bacterial invasion across the gut mucosal barrier. IAP expression and function are lost with starvation and maintained by enteral feeding. It is likely that the IAP silencing that occurs during starvation is a key component of the gut mucosal barrier dysfunction seen in critically ill patients.


Assuntos
Antígenos de Neoplasias/fisiologia , Nutrição Enteral , Mucosa Intestinal/imunologia , Fosfatase Alcalina , Animais , Antígenos de Neoplasias/imunologia , Translocação Bacteriana , Linhagem Celular , Cuidados Críticos , Estado Terminal , Proteínas Ligadas por GPI , Humanos , Imunidade Inata , Intestinos/enzimologia , Camundongos , Camundongos Knockout , Microvilosidades/enzimologia , Inanição/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA