RESUMO
The genus Cuscuta comprises stem holoparasitic plant species with wide geographic distribution. Cuscuta spp. obtain water, nutrients, proteins, and mRNA from their host plants via a parasitic organ called the haustorium. As the haustorium penetrates into the host tissue, search hyphae elongate within the host tissue and finally connect with the host's vascular system. Invasion by Cuscuta spp. evokes various reactions within the host plant's tissues. Here, we show that, when Arabidopsis (Arabidopsis thaliana) is invaded by Cuscuta campestris, ethylene biosynthesis by the host plant promotes elongation of the parasite's search hyphae. The expression of genes encoding 1-aminocylclopropane-1-carboxylic acid (ACC) synthases, ACC SYNTHASE2 (AtACS2) and ACC SYNTHASE6 (AtACS6), was activated in the stem of Arabidopsis plants upon invasion by C. campestris. When the ethylene-deficient Arabidopsis acs octuple mutant was invaded by C. campestris, cell elongation and endoreduplication of the search hyphae were significantly reduced, and the inhibition of search hyphae growth was complemented by exogenous application of ACC. In contrast, in the C. campestris-infected Arabidopsis ethylene-insensitive mutant etr1-3, no growth inhibition of search hyphae was observed, indicating that ETHYLENE RESPONSE1-mediated ethylene signaling in the host plant is not essential for parasitism by C. campestris. Overall, our results suggest that C. campestris recognizes host-produced ethylene as a stimulatory signal for successful invasion.
Assuntos
Arabidopsis/genética , Cuscuta/fisiologia , Etilenos/metabolismo , Doenças das Plantas/parasitologia , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Arabidopsis/metabolismo , Arabidopsis/parasitologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Crescimento Celular , Cuscuta/genética , Endorreduplicação , Interações Hospedeiro-Parasita , Liases/genética , Liases/metabolismo , Mutação , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismoRESUMO
Organisms withstand normal ranges of environmental fluctuations by producing a set of phenotypes genetically programmed as a reaction norm; however, extreme conditions can expose a misregulation of phenotypes called a hidden reaction norm. Although an environment consists of multiple factors, how combinations of these factors influence a reaction norm is not well understood. To elucidate the combinatorial effects of environmental factors, we studied the leaf shape plasticity of the carnivorous pitcher plant Cephalotus follicularis. Clonally propagated plants were subjected to 12-week-long growth experiments in different conditions controlled by growth chambers. Here, we show that the dimorphic response of forming a photosynthetic flat leaf or an insect-trapping pitcher leaf is regulated by two covarying environmental cues: temperature and photoperiod. Even within the normal ranges of temperature and photoperiod, unusual combinations of the two induced the production of malformed leaves that were rarely observed under the environmentally typical combinations. We identified such cases in combinations of a summer temperature with a short-to-neutral day length, whose average frequency in the natural Cephalotus habitats corresponded to a once-in-a-lifetime event for this perennial species. Our results suggest that even if individual cues are within the range of natural fluctuations, a hidden reaction norm can be exposed under their discordant combinations. We anticipate that climate change may challenge organismal responses through not only extreme cues but also through uncommon combinations of benign cues.
Assuntos
Sinais (Psicologia) , Folhas de Planta , Animais , Fenótipo , Fotoperíodo , PlantasRESUMO
The mechanisms underlying correlations between ploidy level and cell size in eukaryotes remain unclear. Recently, we showed that cell length was higher in tetraploid than in diploid dark-grown Arabidopsis hypocotyls. Cuticular function was aberrant, and expression of genes of cuticle formation was reduced. Here, the links between cell elongation, cuticular function, and ploidy level in the etiolated hypocotyl were examined. Seedlings defective in cuticle formation exhibited shorter hypocotyls. This was due to inhibition of cell elongation rather than cell proliferation, indicating that the reduced cuticular function was a consequence of tetraploidy-induced cell elongation rather than its cause. Inhibition of hypocotyl elongation by impaired cuticles was lower in tetraploid than diploid, indicating that tetraploid hypocotyls were less sensitive to cuticular damage.
Assuntos
Arabidopsis/genética , Hipocótilo/crescimento & desenvolvimento , Ploidias , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Crescimento Celular , Proliferação de Células , Escuridão , Hipocótilo/citologia , Hipocótilo/genética , Plântula/citologia , Plântula/genética , Plântula/crescimento & desenvolvimentoRESUMO
Plant size is largely determined by the size of individual cells. A number of studies showed a link between ploidy and cell size in land plants, but this link remains controversial. In this study, post-germination growth, which occurs entirely by cell elongation, was examined in diploid and autotetraploid hypocotyls of Arabidopsis thaliana (L.) Heynh. Final hypocotyl length was longer in tetraploid plants than in diploid plants, particularly when seedlings were grown in the dark. The longer hypocotyl in the tetraploid seedlings developed as a result of enhanced cell elongation rather than by an increase in cell number. DNA microarray analysis showed that genes involved in the transport of cuticle precursors were downregulated in a defined region of the tetraploid hypocotyl when compared to the diploid hypocotyl. Cuticle permeability, as assessed by toluidine-blue staining, and cuticular structure, as visualized by electron microscopy, were altered in tetraploid plants. Taken together, these data indicate that promotion of cell elongation is responsible for ploidy-dependent size determination in the Arabidopsis hypocotyl, and that this process is directly or indirectly related to cuticular function.