Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Nucleic Acids Res ; 52(1): 114-124, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38015437

RESUMO

Next-generation DNA sequencing (NGS) in short-read mode has recently been used for genetic testing in various clinical settings. NGS data accuracy is crucial in clinical settings, and several reports regarding quality control of NGS data, primarily focusing on establishing NGS sequence read accuracy, have been published thus far. Variant calling is another critical source of NGS errors that remains unexplored at the single-nucleotide level despite its established significance. In this study, we used a machine-learning-based method to establish an exome-wide benchmark of difficult-to-sequence regions at the nucleotide-residue resolution using 10 genome sequence features based on real-world NGS data accumulated in The Genome Aggregation Database (gnomAD) of the human reference genome sequence (GRCh38/hg38). The newly acquired metric, designated the 'UNMET score,' along with additional lines of structural information from the human genome, allowed us to assess the sequencing challenges within the exonic region of interest using conventional short-read NGS. Thus, the UNMET score could provide a basis for addressing potential sequential errors in protein-coding exons of the human reference genome sequence GRCh38/hg38 in clinical sequencing.


Assuntos
Exoma , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Humanos , DNA , Exoma/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/normas
2.
J Hum Genet ; 69(7): 349-355, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38605133

RESUMO

Biallelic TOE1 variants can cause pontocerebellar hypoplasia type 7 (PCH7), a condition characterized by pontocerebellar hypoplasia with genital abnormality. TOE1 is a 3'-exonuclese for 3'-end maturation in small nuclear RNA. TOE1 pathogenic variants have been reported at the DEDD catalytic domain and zinc finger motif. Here, we describe a PCH7 patient with novel compound heterozygous TOE1 variants and a detailed clinical course. The patient was a 3-year-old female and showed developmental delay without cerebellar ataxic behavior. Head MRI revealed delayed myelination without pontocerebellar hypoplasia at 9 months of age. Progressive pontocerebellar atrophy was prominent at follow-up MRI. Cerebral abnormalities are characteristic features of PCH7 before pontocerebellar atrophy is observed. One variant, p.Arg331*, was located at the nuclear localization motif (NLM) and partially escaped from nonsense-mediated decay. This variant affected nuclear localization in mutant expressing cells, thus, the TOE1 variant at NLM leads to TOE1 dysfunction associated with nuclear mis-localization.


Assuntos
Sinais de Localização Nuclear , Humanos , Feminino , Pré-Escolar , Sinais de Localização Nuclear/genética , Imageamento por Ressonância Magnética , Mutação , Núcleo Celular/genética , Doenças Cerebelares/genética , Doenças Cerebelares/patologia , Doenças Cerebelares/diagnóstico por imagem
3.
Am J Med Genet A ; 194(1): 94-99, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37646430

RESUMO

The gene CDH11 encodes cadherin-11, a Type II cadherin superfamily member that contains five extracellular cadherin (EC) domains. Cadherin-11 undergoes trans-dimerization via the EC1 domain to generate cadherin complexes. Compound heterozygous and homozygous loss-of-function CDH11 variants are observed in Elsahy-Waters syndrome (EWS), which shows characteristic craniofacial features, vertebral abnormalities, cutaneous syndactyly in 2-3 digits, genitourinary anomalies, and intellectual disability. Heterozygous CDH11 variants can cause Teebi hypertelorism syndrome (THS), which features widely spaced eyes and hypospadias. We report a THS patient with a novel CDH11 variant involving the EC1 domain. The patient was a 10-month-old male with normal developmental milestones, but had widely spaced eyes, strabismus, hypospadias, shawl scrotum, broad thumbs (right bifid thumb in x-ray), polysyndactyly of the left fourth finger, and cutaneous syndactyly of left third/fourth fingers. Exome sequencing identified a de novo heterozygous CDH11 variant (NM_001797.4:c.229C > T [p.Leu77Phe] NC_000016.9:g.64998856G > A). Clinical features were consistent with previously reported THS patients, but polysyndactyly, broad thumb, and cutaneous syndactyly overlapped phenotypic features of EWS. THS and EWS may represent a spectrum of CDH11-related disorders. Residue Leu77 in this novel CDH11 variant lines a large hydrophobic pocket where side chains of the partner cadherin-11 insert to trans-dimerize, suggesting that the cadherin-11 structure might be altered in this variant.


Assuntos
Anormalidades Múltiplas , Hipertelorismo , Hipospadia , Sindactilia , Humanos , Masculino , Lactente , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Japão , Hipertelorismo/genética , Caderinas/genética , Sindactilia/diagnóstico , Sindactilia/genética
4.
Am J Med Genet A ; : e63799, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38923342

RESUMO

Lacrimal punctal agenesis is an extremely rare condition with an unclear genetic basis. Here, we report a 3-year-old male patient harboring a hemizygous variant in glypican 4 (GPC4), which causes Keipert syndrome, who presented with complete lacrimal punctal agenesis, distinctive craniofacial features, mild developmental delay, mild intellectual disability, and autism. The craniofacial features included a prominent forehead, epicanthus, depressed and broad nasal bridge, hypoplastic columella, midface hypoplasia, tented upper lip, and low-set ears. Proband exome sequencing identified a hemizygous variant in GPC4: NM_001448.3:c.1051C > T (p.Arg351*). The GPC4 variant was inherited from his heterozygous mother; X-inactivation followed a skewed pattern in his mother. This patient demonstrated clinical features consistent with Keipert syndrome including craniofacial features, brachydactyly, broad distal phalanx, broad first toe, and mild developmental delay; however, agenesis of the lacrimal puncta has not been reported previously in Keipert syndrome. Our findings suggest that GPC4, which encodes a heparan-sulfate proteoglycan, may play an important role in lacrimal morphogenesis. Our observations also suggest that Keipert syndrome should be considered in patients with lacrimal punctal agenesis.

5.
Am J Med Genet A ; : e63652, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38741564

RESUMO

Noonan syndrome is a so-called "RASopathy," that is characterized by short stature, distinctive facial features, congenital heart defects, and developmental delay. Of individuals with a clinical diagnosis of Noonan syndrome, 80%-90% have pathogenic variants in the known genes implicated in the disorder, but the molecular mechanism is unknown in the remaining cases. Heterozygous pathogenic variants of ETS2 repressor factor (ERF), which functions as a repressor in the RAS/MAPK signaling pathway, cause syndromic craniosynostosis. Here, we report an ERF frameshift variant cosegregating with a Noonan syndrome-like phenotype in a family. The proband was a 3-year-old female who presented with dysmorphic facial features, including proptosis, hypertelorism, slightly down slanted palpebral fissures, low-set posteriorly rotated ears, depressed nasal bridge, short stature, and developmental delay. Exome sequencing of the proband identified a heterozygous ERF variant [NM_006494.4: c.185del p.(Glu62Glyfs*15)]. Her mother and sister showed a similar phenotype and had the same heterozygous ERF variant. A large proportion of the previously reported patients with syndromic craniosynostosis and pathogenic ERF variants also showed characteristic features that overlap with those of Noonan syndrome. The present finding supports an association between heterozygous ERF variants and a Noonan syndrome-like phenotype.

6.
Am J Med Genet A ; 191(8): 2215-2218, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37183566

RESUMO

PHACES syndrome is a multiple congenital disorder with unknown etiology that is characterized by Posterior fossa anomalies, Hemangioma, Arterial lesions, Cardiac abnormalities/coarctation of the aorta, Eye anomalies, and Sternal cleft. Compound heterozygous or homozygous TMEM260 variants cause structural heart defects and renal anomalies syndrome (SHDRA). We describe a 10-year-old male patient with a PHACES-like syndrome and TMEM260 compound heterozygous variants who demonstrated overlapping phenotypes between the two syndromes. He presented with truncus arteriosus, supraumbilical raphe, ophthalmological abnormality, vertebral abnormality, borderline intellectual disability, and hearing loss. He had normal serum creatinine. In proband exome sequencing, compound heterozygous TMEM260 variants (NM_017799.4 c.1617delG p.(Trp539Cysfs*9)/c.1858C > T p.(Gln620*)) were identified. Twelve patients have been reported with TMEM260-related SHDRA: 10 had truncus arteriosus and 6 had renal failure. One previously reported patient had facial port wine nevus and another patient had supraumbilical raphe, which are the cardinal signs for PHACES syndrome. TMEM260-related SHDRA could share overlapping clinical features with PHACES syndrome. This report expands the phenotypic spectrum of a TMEM260-related disorder.


Assuntos
Coartação Aórtica , Anormalidades do Olho , Cardiopatias Congênitas , Síndromes Neurocutâneas , Masculino , Humanos , Síndrome , Coartação Aórtica/diagnóstico , Coartação Aórtica/genética , Anormalidades do Olho/diagnóstico , Anormalidades do Olho/genética , Síndromes Neurocutâneas/patologia
7.
Am J Med Genet A ; 191(3): 882-892, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36563181

RESUMO

Pathogenic AGO1 variants have been associated with neurodevelopmental disorders, including autism spectrum disorder, developmental delay, intellectual disability, and dysmorphic facial appearance. In mammalian models, defects in microRNA (miRNA) biogenesis are associated with congenital heart disease and dilated cardiomyopathy. We describe the case of a patient with partial anomalous pulmonary venous return, hypoplastic left lung, bilateral pulmonary sequestration, and dilated myocardiopathy. We identified a de novo pathogenic variant of AGO1, which encodes an Argonaute protein forming a gene-silencing complex with microRNAs. The patient was diagnosed with dilated cardiomyopathy with no apparent cause at 3 years of age. She was started on enalapril and carvedilol, and her heart failure was well controlled. We expanded the AGO1-associated phenotype to include complex congenital cardiovascular anomaly and dilated cardiomyopathy in humans.


Assuntos
Transtorno do Espectro Autista , Cardiomiopatia Dilatada , Deficiência Intelectual , MicroRNAs , Transtornos do Neurodesenvolvimento , Humanos , Feminino , Animais , Transtorno do Espectro Autista/genética , MicroRNAs/genética , Deficiência Intelectual/genética , Mamíferos/genética , Mamíferos/metabolismo
8.
Clin Genet ; 101(3): 335-345, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34958122

RESUMO

Rubinstein-Taybi syndrome (RSTS) is characterized by dysmorphic facial features, broad thumbs, and intellectual disability. CREB-binding protein (CREBBP) or E1A-binding protein P300 (EP300) are causative genes. To elucidate the underlying genetic and genomic architecture related to the RSTS phenotype, we performed comprehensive genetic analysis targeting CREBBP and/or EP300 in 22 clinically diagnosed patients. During the 11-year study period, we used several analysis methods including high-resolution melting, array-based comparative genomic hybridization, panel-based exome sequencing, whole exome sequencing, and whole genome sequencing (WGS). We identified the causative variants in 19 patients (86.3%), but they were variable and complex, so we must combine multiple analysis methods. Notably, we found genetic alterations in the non-coding regions of two patients (10.5%, 2/19): scattered deletions including a partial 5'-untranslated region of CREBBP in one patient (all coding exons were intact), and a deep 229-bp intronic deletion in another patient, resulting in a splicing error. Furthermore, we identified rare clinical findings: two patients with an EP300 variant showed abnormal development of the neural tube, and one patient with a CREBBP variant had anorectal atresia with a cloaca. Our findings expand the allelic heterogeneity of RSTS, underscore the utility of comprehensive genetic analysis, and suggest that WGS may be a practical diagnostic strategy.


Assuntos
Síndrome de Rubinstein-Taybi , Proteína de Ligação a CREB/genética , Hibridização Genômica Comparativa , Proteína p300 Associada a E1A/genética , Estudos de Associação Genética , Testes Genéticos , Humanos , Mutação , Síndrome de Rubinstein-Taybi/diagnóstico , Síndrome de Rubinstein-Taybi/genética , Sequenciamento do Exoma
9.
Int Immunol ; 32(10): 663-671, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32603428

RESUMO

Autosomal recessive (AR) complete signal transducer and activator of transcription 1 (STAT1) deficiency is an extremely rare primary immunodeficiency that causes life-threatening mycobacterial and viral infections. Only seven patients from five unrelated families with this disorder have been so far reported. All causal STAT1 mutations reported are exonic and homozygous. We studied a patient with susceptibility to mycobacteria and virus infections, resulting in identification of AR complete STAT1 deficiency due to compound heterozygous mutations, both located in introns: c.128+2 T>G and c.542-8 A>G. Both mutations were the first intronic STAT1 mutations to cause AR complete STAT1 deficiency. Targeted RNA-seq documented the impairment of STAT1 mRNA expression and contributed to the identification of the intronic mutations. The patient's cells showed a lack of STAT1 expression and phosphorylation, and severe impairment of the cellular response to IFN-γ and IFN-α. The case reflects the importance of accurate clinical diagnosis and precise evaluation, to include intronic mutations, in the comprehensive genomic study when the patient lacks molecular pathogenesis. In conclusion, AR complete STAT1 deficiency can be caused by compound heterozygous and intronic mutations. Targeted RNA-seq-based systemic gene expression assay may help to increase diagnostic yield in inconclusive cases after comprehensive genomic study.


Assuntos
Doenças Genéticas Inatas/genética , Fator de Transcrição STAT1/imunologia , Criança , Doenças Genéticas Inatas/diagnóstico , Humanos , Masculino , Mutação , RNA Mensageiro/genética , RNA-Seq , Fator de Transcrição STAT1/deficiência , Fator de Transcrição STAT1/genética
10.
J Allergy Clin Immunol ; 146(5): 1109-1120.e4, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32298700

RESUMO

BACKGROUND: Interactions between the tumor necrosis factor (TNF) ligand superfamily and TNF receptor superfamily play critical roles in B-cell development and maturation. A proliferation-inducing ligand (APRIL), a member of the TNF ligand superfamily, is secreted from myeloid cells and known to induce the differentiation of memory B cells to plasmacytes. OBJECTIVE: We sought to elucidate the role of APRIL in B-cell differentiation and immunoglobulin production through the analysis of complete APRIL deficiency in human. METHODS: We performed whole exome sequencing in a patient with adult common variable immunodeficiency. His parents were in a consanguineous marriage. TNFSF13 mRNA and protein expression were analyzed in the primary cells and plasma from the patient and in cDNA-transfected cells and supernatants of the cultures in vitro. Immunologic analysis was performed by using flow cytometry and next-generation sequencing. Monocyte-derived dendritic cells differentiated from induced pluripotent stem cells (iPSC-moDCs) were cocultured with memory B cells from healthy controls to examine in vitro plasmacyte differentiation. RESULTS: We identified a homozygous frameshift mutation in TNFSF13, the gene encoding APRIL, in the patient. APRIL mRNA and protein were completely absent in the monocytes and iPSC-moDCs of the patient. In contrast to the results of previous animal model studies, the patient showed hypogammaglobulinemia with a markedly reduced level of plasmacytes in peripheral blood and a clearly increased level of circulating marginal zone B cells. Although iPSC-moDC-induced in vitro plasmacyte differentiation was reduced in the patient, recombinant APRIL supplementation corrected this abnormality. CONCLUSION: The first APRIL deficiency in an adult patient with common variable immunodeficiency revealed the role of APRIL in lifelong maintenance of plasmacytes and immunoglobulin production in humans.


Assuntos
Agamaglobulinemia/genética , Formação de Anticorpos/genética , Linfócitos B/imunologia , Plasmócitos/imunologia , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Adulto , Diferenciação Celular , Células Cultivadas , Consanguinidade , Humanos , Memória Imunológica , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Mutação/genética , Linhagem , Sequenciamento do Exoma
11.
J Clin Immunol ; 40(5): 729-740, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32506361

RESUMO

PURPOSE: Owing to recent technological advancements, using next-generation sequencing (NGS) and the accumulation of clinical experiences worldwide, more than 420 genes associated with inborn errors of immunity (IEI) have been identified, which exhibit large genotypic and phenotypic variations. Consequently, NGS-based comprehensive genetic analysis, including whole-exome sequencing (WES), have become more valuable in the clinical setting and have contributed to earlier diagnosis, improved treatment, and prognosis. However, these approaches have the following disadvantages that need to be considered: a relatively low diagnostic rate, high cost, difficulties in the interpretation of each variant, and the risk of incidental findings. Thus, the objective of this study is to review our WES results of a large number of patients with IEI and to elucidate patient characteristics, which are related to the positive WES result. METHODS: We performed WES for 136 IEI patients with negative conventional screening results for candidate genes and classified these variants depending on validity of their pathogenicity. RESULTS: We identified disease-causing pathogenic mutations in 36 (26.5%) of the patients which were found in known IEI-causing genes. Although the overall diagnostic rate was not high and was not apparently correlated with the clinical subcategories and severity, we revealed that earlier onset with longer duration of diseases were associated with positive WES results, especially in pediatric cases. CONCLUSIONS: Most of the disease-causing germline mutations were located in the known IEI genes which could be predicted using patients' clinical characteristics. These results may be useful when considering appropriate genetic approaches in the clinical setting.


Assuntos
Genótipo , Mutação em Linhagem Germinativa/genética , Imunidade/genética , Mutação/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética , Doenças Genéticas Inatas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Masculino , Sequenciamento do Exoma , Adulto Jovem
12.
Am J Med Genet A ; 182(10): 2333-2344, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32803813

RESUMO

Kabuki syndrome is characterized by a variable degree of intellectual disability, characteristic facial features, and complications in various organs. Many variants have been identified in two causative genes, that is, lysine methyltransferase 2D (KMT2D) and lysine demethylase 6A (KDM6A). In this study, we present the results of genetic screening of 100 patients with a suspected diagnosis of Kabuki syndrome in our center from July 2010 to June 2018. We identified 76 variants (43 novel) in KMT2D and 4 variants (3 novel) in KDM6A as pathogenic or likely pathogenic. Rare variants included a deep splicing variant (c.14000-8C>G) confirmed by RNA sequencing and an 18% mosaicism level for a KMT2D mutation. We also characterized a case with a blended phenotype consisting of Kabuki syndrome, osteogenesis imperfecta, and 16p13.11 microdeletion. We summarized the clinical phenotypes of 44 patients including a patient who developed cervical cancer of unknown origin at 16 years of age. This study presents important details of patients with Kabuki syndrome including rare clinical cases and expands our genetic understanding of this syndrome, which will help clinicians and researchers better manage and understand patients with Kabuki syndrome they may encounter.


Assuntos
Anormalidades Múltiplas/genética , Proteínas de Ligação a DNA/genética , Face/anormalidades , Predisposição Genética para Doença , Doenças Hematológicas/genética , Histona Desmetilases/genética , Proteínas de Neoplasias/genética , Neoplasias do Colo do Útero/genética , Doenças Vestibulares/genética , Anormalidades Múltiplas/epidemiologia , Anormalidades Múltiplas/patologia , Adolescente , Adulto , Face/patologia , Feminino , Heterogeneidade Genética , Testes Genéticos/métodos , Genótipo , Doenças Hematológicas/complicações , Doenças Hematológicas/epidemiologia , Doenças Hematológicas/patologia , Humanos , Masculino , Mutação , Fenótipo , Neoplasias do Colo do Útero/complicações , Neoplasias do Colo do Útero/epidemiologia , Neoplasias do Colo do Útero/patologia , Doenças Vestibulares/complicações , Doenças Vestibulares/epidemiologia , Doenças Vestibulares/patologia , Adulto Jovem
13.
Pediatr Int ; 62(5): 556-561, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31955471

RESUMO

BACKGROUND: Genetic testing has enabled the diagnosis of multiple congenital anomalies and/or intellectual disabilities. However, because of the phenotypic variability in these disorders, selection of an appropriate genetic test can be difficult and complex. For clinical examination, particularly in clinical facilities, a simple and standardized system is needed. METHODS: We compared microarray comparative genomic hybridization and clinical exome sequencing with regard to diagnostic yield, cost, and time required to reach a definitive diagnosis. After first performing G-banding for 200 patients with multiple congenital anomalies and/or intellectual disability, as a subsequent genetic test, microarray and clinical exome sequencing were compared with regard to diagnostic yield, cost, and time required. RESULTS: There was no obvious difference in the diagnostic rate between the two methods; however, clinical exome sequencing was superior in terms of cost and time. In addition, clinical exome sequencing could sufficiently identify copy number variants, and even smaller copy number variants could be identified. CONCLUSIONS: Clinical exome sequencing should be implemented earlier as a genetic test for undiagnosed patients with multiple congenital anomalies and/or intellectual disabilities. Our results can be used to establish inspection methods in clinical facilities.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Testes Genéticos/métodos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Criança , Pré-Escolar , Hibridização Genômica Comparativa/economia , Hibridização Genômica Comparativa/métodos , Variações do Número de Cópias de DNA , Testes Genéticos/economia , Humanos , Análise em Microsséries/métodos , Sequenciamento do Exoma/economia , Sequenciamento do Exoma/métodos
14.
Clin Immunol ; 208: 108256, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31494288

RESUMO

Hereditary folate malabsorption (HFM) is an autosomal recessive disease caused by mutations in SLC46A1 encoding the proton-coupled folate transporter (PCFT). HFM patients present with various clinical features including megaloblastic anemia, thrombocytopenia, combined immunodeficiency and neurodevelopmental disorders. In this study, we report the same deep intronic mutation of c.1166-285 T > G shared by four unrelated Japanese patients with HFM. This mutation was shown to generate a cryptic splice donor site for a 168-bp insertion of intron 3 sequences, leading to premature termination in the middle of this insertion. This mutation could be a founder mutation in the Japanese population, but also could be a hot-spot and could be present in undiagnosed HFM patients worldwide because of the difficulty to detect this mutation.


Assuntos
Deficiência de Ácido Fólico/genética , Síndromes de Malabsorção/genética , Transportador de Folato Acoplado a Próton/genética , Povo Asiático/genética , Feminino , Humanos , Lactente , Masculino , Mutação
16.
J Hum Genet ; 63(11): 1185-1188, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30108319

RESUMO

A 15q11.2 microdeletion (BP1-BP2) is associated with congenital heart diseases (CHDs), developmental delay, and epilepsy. This deletion co-occurs with CHD in 20-30% patients, but a familial case of CHD and a 15q11.2 deletion has not been identified. Here we report the first familial (three siblings) case of total anomalous pulmonary venous return associated with 15q11.2 deletion. Array comparative genomic hybridization identified a ~395 kb deletion at 15q11.2 in patient 1. This deletion was confirmed by fluorescence in situ hybridization in patients 1 and 3 and their asymptomatic father. No deleterious mutation was identified by proband-only exome sequencing of patient 1. One healthy sibling and their mother did not carry the deletion. This deletion is often inherited from asymptomatic parents with an estimated low penetrance of 10.4%. Conversely, we observed high penetrance of this deletion, but secondary copy-number variants or pathogenic variants were not detected in this family.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 15/genética , Síndrome de Cimitarra/genética , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Síndrome de Cimitarra/patologia
17.
Am J Med Genet A ; 176(3): 707-711, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29359444

RESUMO

MAGEL2 is the paternally expressed gene within Prader-Willi syndrome critical region at 15q11.2. We encountered three individuals in whom truncating mutations of MAGEL2 were identified. Patients 1 and 2, siblings born to healthy, non-consanguineous Japanese parents, showed generalized hypotonia, lethargy, severe respiratory difficulty, poor feeding, and multiple anomalies including arthrogryposis soon after birth. We carried out whole-exome sequencing, which detected a MAGEL2 mutation (c.1912C>T, p.Gln638*, heterozygous). The patients' father was heterozygous for the mutation. Patient 3 was a female infant, showed respiratory difficulty reflecting pulmonary hypoplasia, generalized hypotonia, feeding difficulty and multiple anomalies soon after birth. Targeted next-generation sequencing detected a novel heterozygous mutation in MAGEL2 (c.3131C>A, p.Ser1044*). This mutation was not found in the parents. MAGEL2 mutations, first reported to be the cause of the Prader-Willi like syndrome with autism by Schaaf et al. (2013) Nature Genetics, 45: 1405-1408 show the wide range of phenotypic spectrum from lethal arthrogryposis multiplex congenital to autism spectrum disorder (ASD) and mild intellectual disability (ID). Our results indicate that MAGEL2 mutations cause multiple congenital anomalies and intellectual disability accompanied by arthrogryposis multiplex congenita and various endocrinologic abnormalities, supporting that the view that clinical phenotypes of MAGEL2 mutations are variable.


Assuntos
Artrogripose/diagnóstico , Artrogripose/genética , Sistema Endócrino/anormalidades , Adolescente , Alelos , Biomarcadores , Criança , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Imageamento por Ressonância Magnética , Mutação , Linhagem , Fenótipo , Síndrome de Prader-Willi/diagnóstico , Síndrome de Prader-Willi/genética , Proteínas/genética , Síndrome , Sequenciamento do Exoma
18.
Am J Med Genet A ; 176(3): 699-702, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29341476

RESUMO

Rett syndrome (RTT) is a severe neurodevelopmental disorder typically affecting females. It is mainly caused by loss-of-function mutations that affect the coding sequence of exon 3 or 4 of methyl-CpG-binding protein 2 (MECP2). Severe neonatal encephalopathy resulting in death before the age of 2 years is the most common phenotype observed in males affected by a pathogenic MECP2 variant. Mutations in MECP2 exon 1 affecting the MeCP2_e1 isoform are relatively rare causes of RTT in females, and only one case of a male patient with MECP2-related severe neonatal encephalopathy caused by a mutation in MECP2 exon 1 has been reported. This is the first reported case of a male with classic RTT caused by a 5-bp duplication in the open-reading frame of MECP2 exon 1 (NM_001110792.1:c.23_27dup) that introduced a premature stop codon [p.(Ser10Argfs*36)] in the MeCP2_e1 isoform, which has been reported in one female patient with classic RTT. Therefore, both males and females displaying at least some type of MeCP2_e1 mutation may exhibit the classic RTT phenotype.


Assuntos
Éxons , Proteína 2 de Ligação a Metil-CpG/genética , Mutação , Fenótipo , Síndrome de Rett/diagnóstico , Síndrome de Rett/genética , Processamento Alternativo , Sequência de Bases , Encéfalo/anormalidades , Pré-Escolar , Análise Mutacional de DNA , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Imageamento por Ressonância Magnética , Masculino
20.
Am J Med Genet A ; 173(4): 1082-1086, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28328141

RESUMO

Mesomelia-synostoses syndrome (MSS) is a rare, autosomal-dominant, syndromal osteochondrodysplasia characterized by mesomelic limb shortening, acral synostoses, and multiple congenital malformations due to a non-recurrent deletion at 8q13 that always encompasses two coding-genes, SULF1 and SLCO5A1. To date, five unrelated patients have been reported worldwide, and MMS was previously proposed to not be a genomic disorder associated with deletions recurring from non-allelic homologous recombination (NAHR) in at least two analyzed cases. We conducted targeted gene panel sequencing and subsequent array-based copy number analysis in an 11-year-old undiagnosed Japanese female patient with multiple congenital anomalies that included mesomelic limb shortening and detected a novel 590 Kb deletion at 8q13 encompassing the same gene set as reported previously, resulting in the diagnosis of MSS. Breakpoint sequences of the deleted region in our case demonstrated the first LINE-1s (L1s)-mediated unequal NAHR event utilizing two distant L1 elements as homology substrates in this disease, which may represent a novel causative mechanism of the 8q13 deletion, expanding the range of mechanisms involved in the chromosomal rearrangements responsible for MSS.


Assuntos
Anormalidades Múltiplas/genética , Sequência de Bases , Cromossomos Humanos Par 8/química , Recombinação Homóloga , Deformidades Congênitas dos Membros/genética , Elementos Nucleotídeos Longos e Dispersos , Deleção de Sequência , Sinostose/genética , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/etnologia , Anormalidades Múltiplas/patologia , Povo Asiático , Criança , Variações do Número de Cópias de DNA , Feminino , Genes Dominantes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Deformidades Congênitas dos Membros/diagnóstico , Deformidades Congênitas dos Membros/etnologia , Deformidades Congênitas dos Membros/patologia , Transportadores de Ânions Orgânicos/deficiência , Transportadores de Ânions Orgânicos/genética , Sulfotransferases/deficiência , Sulfotransferases/genética , Sinostose/diagnóstico , Sinostose/etnologia , Sinostose/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA