Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(30): 16514-16520, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-33998763

RESUMO

The activation of molecular oxygen is a fundamental step in almost all catalytic oxidation reactions. We have studied this topic and the role of surface vacancies for Co3 O4 (100) films with a synergistic combination of experimental and theoretical methods. We show that the as-prepared surface is B-layer terminated and that mild reduction produces oxygen single and double vacancies in this layer. Oxygen adsorption experiments clearly reveal different superoxide species below room temperature. The superoxide desorbs below ca. 120 K from a vacancy-free surface and is not active for CO oxidation while superoxide on a surface with oxygen vacancies is stable up to ca. 270 K and can oxidize CO already at the low temperature of 120 K. The vacancies are not refilled by oxygen from the superoxide, which makes them suitable for long-term operation. Our joint experimental/theoretical effort highlights the relevance of surface vacancies in catalytic oxidation reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA