Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cells ; 11(20)2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36291141

RESUMO

The capacity to induce tumour-cell specific apoptosis represents the most unique feature of the TNF receptor (TNFR) family member CD40. Recent studies on the signalling events triggered by its membrane-presented ligand CD40L (mCD40L) in normal and malignant epithelial cells have started to unravel an exquisite context and cell type specificity for the functional effects of CD40. Here, we demonstrate that, in comparison to other carcinomas, mCD40L triggered strikingly more rapid apoptosis in colorectal carcinoma (CRC) cells, underpinned by its ability to entrain two concurrently operating signalling axes. CD40 ligation initially activates TNFR-associated factor 3 (TRAF3) and subsequently NADPH oxidase (NOX)/Apoptosis signal-regulating kinase 1 (ASK1)-signalling and induction of reactive oxygen species (ROS) to mediate p38/JNK- and ROS-dependent cell death. At that point, p38/JNK signalling directly activates the mitochondrial pathway, and triggers rapid induction of intracellular TNF-related apoptosis-inducing ligand (TRAIL) that signals from internal compartments to initiate extrinsic caspase-10-asscociated apoptosis, leading to truncated Bid (tBid)-activated mitochondrial signalling. p38 and JNK are essential both for direct mitochondrial apoptosis induction and the TRAIL/caspase-10/tBid pathway, but their involvement follows functional hierarchy and temporally controlled interplay, as p38 function is required for JNK phosphorylation. By engaging both intrinsic and extrinsic pathways to activate apoptosis via two signals simultaneously, CD40 can accelerate CRC cell death. Our findings further unravel the multi-faceted properties of the CD40/mCD40L dyad, highlighted by the novel TNFR crosstalk that accelerates tumour cell-specific death, and may have implications for the use of CD40 as a therapeutic target.


Assuntos
Apoptose , Antígenos CD40 , Neoplasias Colorretais , MAP Quinase Quinase 4 , Espécies Reativas de Oxigênio , Fator 3 Associado a Receptor de TNF , Ligante Indutor de Apoptose Relacionado a TNF , Proteínas Quinases p38 Ativadas por Mitógeno , Humanos , Caspase 10/metabolismo , Antígenos CD40/metabolismo , Ligante de CD40/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator 3 Associado a Receptor de TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo
2.
Cells ; 11(9)2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35563808

RESUMO

Angiogenesis and metastasis play pivotal roles in the progression of cancer. We recently discovered that crocin, a dietary carotenoid derived from the Himalayan crocus, inhibited the growth of colon cancer cells. However, the exact role of crocin on the angiogenesis and metastasis in colorectal cancer remains unclear. In the present study, we demonstrated that crocin significantly reduces the viability of colon cancer cells (HT-29, Caco-2) and human umbilical vein endothelial cells (HUVEC), but was not toxic to human colon epithelial (HCEC) cells. Furthermore, pre-treatment of human carcinoma cells (HT-29 and Caco-2) with crocin inhibited cell migration, invasion, and angiogenesis in concentration -dependent manner. Further studies demonstrated that crocin inhibited TNF-α, NF-κB and VEGF pathways in colon carcinoma cell angiogenesis and metastasis. Crocin also inhibited cell migration, invasion, and tube formation in human umbilical vein endothelial cells (HUVEC) in a concentration -dependent manner. We also observed that crocin significantly reduced the secretion of VEGF and TNF-α induced activation of NF-kB by human colon carcinoma cells. In the absence of TNF-α, a concentration-dependent reduction in NF-kB was observed. Many of these observations were confirmed by in vivo angiogenesis models, which showed that crocin significantly reduced the progression of tumour growth. Collectively, these finding suggest that crocin inhibits angiogenesis and colorectal cancer cell metastasis by targeting NF-kB and blocking TNF-α/NF-κB/VEGF pathways.


Assuntos
Carcinoma , Neoplasias do Colo , Células CACO-2 , Carotenoides/farmacologia , Neoplasias do Colo/tratamento farmacológico , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , NF-kappa B/metabolismo , Neovascularização Patológica/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Bioeng Transl Med ; 7(1): e10248, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35111949

RESUMO

More than five decades have been invested in understanding glucose biosensors. Yet, this immensely versatile field has continued to gain attention from the scientific world to better understand and diagnose diabetes. However, such extensive work done to improve glucose sensing devices has still not yielded desirable results. Drawbacks like the necessity of the invasive finger-pricking step and the lack of optimization of diagnostic interventions still need to be considered to improve the testing process of diabetic patients. To upgrade the glucose-sensing devices and reduce the number of intermediary steps during glucose measurement, fourth-generation glucose sensors (FGGS) have been introduced. These sensors, made using robust electrocatalytic copper nanostructures, improve diagnostic efficiency and cost-effectiveness. This review aims to present the essential scientific progress in copper nanostructure-based FGGS in the past 10 years (2010 to present). After a short introduction, we presented the working principles of these sensors. We then highlighted the importance of copper nanostructures as advanced electrode materials to develop reliable real-time FGGS. Finally, we cover the advantages, shortcomings, and prospects for developing highly sensitive, stable, and specific FGGS.

4.
Integr Cancer Ther ; 21: 15347354221096766, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35796303

RESUMO

The efficacy of chemotherapy depends on the tumor microenvironment. This microenvironment consists of a complex cellular network that can exert both stimulatory and inhibitory effects on tumor genesis. Given the increasing interest in the effectiveness of cannabis, cannabinoids have gained much attention as a potential chemotherapy drug. Cannabinoids are a group of marker compounds found in Cannabis sativa L., more commonly known as marijuana, a psychoactive drug used since ancient times for pain management. Although the anticancer potential of C. sativa, has been recognized previously, increased attention was generated after discovering the endocannabinoid system and the successful production of cannabinoid receptors. In vitro and in vivo studies on various tumor models have shown therapeutic efficiency by modifying the tumor microenvironment. However, despite extensive attention regarding potential therapeutic implications of cannabinoids, considerable clinical and preclinical analysis is needed to adequately define the physiological, pharmacological, and medicinal aspects of this range of compounds in various disorders covered in this review. This review summarizes the key literature surrounding the role of cannabinoids in the tumor microenvironment and their future promise in cancer treatment.


Assuntos
Canabinoides , Cannabis , Neoplasias , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Endocanabinoides , Humanos , Neoplasias/tratamento farmacológico , Receptores de Canabinoides , Microambiente Tumoral
5.
Asian Pac J Cancer Prev ; 23(1): 161-169, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35092384

RESUMO

AIM: To investigate the potential anti-inflammatory and biochemical effects of Moringa peregrina leaf extracts on testosterone-induced benign prostatic hyperplasia (BPH) in rats. METHODS: Six groups of rats (each group included 5 rats) were included in this study. The groups included: 1) the control group, 2) the testosterone-induced BPH group, 3) with 50 mg/kg bwt (bodyweight) oil-treated BPH, 4) with 100 mg/kg bwt. oil-treated BPH, 5) with 500mg/kg bwt. ethanol treated BPH and 6) with 1,000 mg/kg bwt. aqueous treated BPH group. Biochemical markers were measured to evaluate the effect of M. peregrina leaf extracts. RESULTS: Our results showed a significant improvement in the thickness of epithelial cells of the BPH glandular tissues when treated with different M. peregrina extracts (p < 0.05). In addition, M. peregrina extracts showed anti-inflammatory, anti-proliferative and anti-angiogenesis effects on the BPH tissues by reduction of IL-6, PCNA and VEGF-A, respectively. CONCLUSION: Our preclinical study concluded that M. peregrina leaf extracts showed a significant effect on BPH by reducing inflammation, proliferation, and angiogenic processes with no signs of toxicity.


Assuntos
Inibidores da Angiogênese/farmacologia , Anti-Inflamatórios/farmacologia , Proliferação de Células/efeitos dos fármacos , Moringa , Extratos Vegetais/farmacologia , Hiperplasia Prostática/tratamento farmacológico , Animais , Modelos Animais de Doenças , Masculino , Folhas de Planta , Hiperplasia Prostática/induzido quimicamente , Ratos , Testosterona
6.
Pharmaceuticals (Basel) ; 14(12)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34959610

RESUMO

The prevalence of colon-associated diseases has increased significantly over the past several decades, as evidenced by accumulated literature on conditions such as Crohn's disease, irritable bowel syndrome, colorectal cancer, and ulcerative colitis. Developing therapeutics for these diseases is challenging due to physiological barriers of the colon, systemic side effects, and the intestinal environment. Therefore, in a search for novel methods to overcome some of these problems, researchers discovered that microbial metabolism by gut microbiotia offers a potential method for targeted drug delivery This overview highlights several drug delivery systems used to modulate the microbiota and improve colon-targeted drug delivery. This technology will be important in developing a new generation of therapies which harness the metabolism of the human gut microflora.

8.
Cancers (Basel) ; 12(1)2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31906321

RESUMO

Piceatannol (PIC) is known to have anticancer activity, which has been attributed to its ability to block the proliferation of cancer cells via suppression of the NF-kB signaling pathway. However, its effect on hypoxia-inducible factor (HIF) is not well known in cancer. In this study, PIC was loaded into bovine serum albumin (BSA) by desolvation method as PIC-BSA nanoparticles (NPs). These PIC-BSA nanoparticles were assessed for in vitro cytotoxicity, migration, invasion, and colony formation studies and levels of p65 and HIF-1α. Our results indicate that PIC-BSA NPs were more effective in downregulating the expression of nuclear p65 and HIF-1α in colon cancer cells as compared to free PIC. We also observed a significant reduction in inflammation induced by chemical colitis in mice by PIC-BSA NPs. Furthermore, a significant reduction in tumor size and number of colon tumors was also observed in the murine model of colitis-associated colorectal cancer, when treated with PIC-BSA NPs as compared to free PIC. The overall results indicate that PIC, when formulated as PIC-BSA NPs, enhances its therpautice potential. Our work could prompt further research in using natural anticancer agents as nanoparticels with possiable human clinical trails. This could lead to the development of a new line of safe and effective therapeutics for cancer patients.

9.
Nutrients ; 12(6)2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604971

RESUMO

Pancreatic cancer is one of the fatal causes of global cancer-related deaths. Although surgery and chemotherapy are standard treatment options, post-treatment outcomes often end in a poor prognosis. In the present study, we investigated anti-pancreatic cancer and amelioration of radiation-induced oxidative damage by crocin. Crocin is a carotenoid isolated from the dietary herb saffron, a prospect for novel leads as an anti-cancer agent. Crocin significantly reduced cell viability of BXPC3 and Capan-2 by triggering caspase signaling via the downregulation of Bcl-2. It modulated the expression of cell cycle signaling proteins P53, P21, P27, CDK2, c-MYC, Cyt-c and P38. Concomitantly, crocin treatment-induced apoptosis by inducing the release of cytochrome c from mitochondria to cytosol. Microarray analysis of the expression signature of genes induced by crocin showed a substantial number of genes involved in cell signaling pathways and checkpoints (723) are significantly affected by crocin. In mice bearing pancreatic tumors, crocin significantly reduced tumor burden without a change in body weight. Additionally, it showed significant protection against radiation-induced hepatic oxidative damage, reduced the levels of hepatic toxicity and preserved liver morphology. These findings indicate that crocin has a potential role in the treatment, prevention and management of pancreatic cancer.


Assuntos
Carotenoides/uso terapêutico , Hepatopatias/etiologia , Hepatopatias/prevenção & controle , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/radioterapia , Lesões por Radiação/prevenção & controle , Animais , Antineoplásicos Fitogênicos , Apoptose/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Crocus/química , Citocromos c/metabolismo , Feminino , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Camundongos Nus , Neoplasias Pancreáticas/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transcriptoma , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Asian Pac J Cancer Prev ; 20(9): 2645-2651, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31554359

RESUMO

Background: Colon cancer is aggressive and it causes 0.5 million deaths per year. Practicing natural medicines for cancer treatment is safer than conventional drugs. World health organization emphasizes on the importance of practicing natural medicines and developing natural product based drugs for cancer treatment. Recently we reported an anti colon cancer activity associated with pyrogallol isolated from medicinal plant Acacia nilotica in HT-29 cells in vitro. To extend our observation in this study we evaluated in vivo colon tumor remission property of acetone extract of A. nilotica (ACE) and pyrogallol. Materials and Methods: In vivo toxicity of ACE and pyrogallol was assessed and In vivo tumor remission activity of ACE and pyrogallol was determined in murine model. Results: Mice were tolerated different doses of ACE and pyrogallol. Tumor size was considerably reduced in pyrogallol treated mice similar to doxorubicin. Tumor bearing mice treated with ACE and pyrogallol showed mild decline in body weight. Conclusion: Pyrogallol was found to be an effective anti colon cancer agent with less toxicity.


Assuntos
Acacia/química , Antioxidantes/farmacologia , Neoplasias do Colo/tratamento farmacológico , Extratos Vegetais/farmacologia , Pirogalol/farmacologia , Animais , Apoptose , Proliferação de Células , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Folhas de Planta/química , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Ultrason Sonochem ; 24: 184-92, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25432400

RESUMO

The ability of sonication phenomena in facilitating separation of azeotropic mixtures presents a promising approach for the development of more intensified and efficient distillation systems than conventional ones. To expedite the much-needed development, a mathematical model of the system based on conservation principles, vapor-liquid equilibrium and sonochemistry was developed in this study. The model that was founded on a single stage vapor-liquid equilibrium system and enhanced with ultrasonic waves was coded using MATLAB simulator and validated with experimental data for ethanol-ethyl acetate mixture. The effects of both ultrasonic frequency and intensity on the relative volatility and azeotropic point were examined, and the optimal conditions were obtained using genetic algorithm. The experimental data validated the model with a reasonable accuracy. The results of this study revealed that the azeotropic point of the mixture can be totally eliminated with the right combination of sonication parameters and this can be utilized in facilitating design efforts towards establishing a workable ultrasonically intensified distillation system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA