Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Educ ; 101(2): 337-343, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38370575

RESUMO

Topics associated with the chemical sciences form a significant part of the curriculum in science at the primary school level in the U.K. In this methodology paper, we demonstrate how a wide range of research articles associated with the chemical sciences can be disseminated to an elementary school audience and how children can carry out investigations associated with cutting-edge research in the classroom. We discuss how the Primary Science Teaching Trust's (PSTT's) "I bet you did not know" (IBYDK) articles and their accompanying Teacher Guides benefit children, primary (elementary) school teachers, and other stakeholders including the researchers themselves. We define three types of research articles; ones describing how children can reproduce the research themselves without much adaptation, others where children can mirror the research using similar methods, and some where an analogy can be used to explain the research. We provide exemplars of each type and some preliminary feedback on articles written.

2.
F1000Res ; 2: 148, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24358859

RESUMO

In neurodegenerative conditions and following brain trauma it is not understood why neurons die while astrocytes and microglia survive and adopt pro-inflammatory phenotypes. We show here that the damaged adult brain releases diffusible factors that can kill cortical neurons and we have identified histone H1 as a major extracellular candidate that causes neurotoxicity and activation of the innate immune system. Extracellular core histones H2A, H2B H3 and H4 were not neurotoxic. Innate immunity in the central nervous system is mediated through microglial cells and we show here for the first time that histone H1 promotes their survival, up-regulates MHC class II antigen expression and is a powerful microglial chemoattractant. We propose that when the central nervous system is degenerating, histone H1 drives a positive feedback loop that drives further degeneration and activation of immune defences which can themselves be damaging. We suggest that histone H1 acts as an antimicrobial peptide and kills neurons through mitochondrial damage and apoptosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA