Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
PLoS One ; 19(2): e0297274, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38386647

RESUMO

Tracking livestock abortion patterns over time and across factors such as species and agroecological zones (AEZs) could inform policies to mitigate disease emergence, zoonoses risk, and reproductive losses. We conducted a year-long population-based active surveillance of livestock abortion between 2019 and 2020, in administrative areas covering 52% of Kenya's landmass and home to 50% of Kenya's livestock. Surveillance sites were randomly selected to represent all AEZs in the country. Local animal health practitioners electronically transmitted weekly abortion reports from each ward, the smallest administrative unit, to a central server, using a simple short messaging service (SMS). Data were analyzed descriptively by administrative unit, species, and AEZ to reveal spatiotemporal patterns and relationships with rainfall and temperature. Of 23,766 abortions reported in all livestock species, sheep and goats contributed 77%, with goats alone contributing 53%. Seventy-seven per cent (n = 18,280) of these abortions occurred in arid and semi-arid lands (ASALs) that primarily practice pastoralism production systems. While spatiotemporal clustering of cases was observed in May-July 2019 in the ASALs, there was a substantial seasonal fluctuation across AEZs. Kenya experiences high livestock abortion rates, most of which go unreported. We recommend further research to document the national true burden of abortions. In ASALs, studies linking pathogen, climate, and environmental surveillance are needed to assign livestock abortions to infectious or non-infectious aetiologies and conducting human acute febrile illnesses surveillance to detect any links with the abortions.


Assuntos
Aborto Animal , Cabras , Gado , Ovinos , Animais , Feminino , Gravidez , Quênia/epidemiologia , Zoonoses/epidemiologia , Aborto Animal/epidemiologia , Aborto Animal/etiologia
2.
PLoS One ; 19(8): e0297324, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39208189

RESUMO

Cholera continues to cause many outbreaks in low and middle-income countries due to inadequate water, sanitation, and hygiene services. We describe a protracted cholera outbreak in Nairobi City County, Kenya in 2017. We reviewed the cholera outbreak line lists from Nairobi City County in 2017 to determine its extent and factors associated with death. A suspected case of cholera was any person aged >2 years old who had acute watery diarrhea, nausea, or vomiting, whereas a confirmed case was where Vibrio cholerae was isolated from the stool specimen. We summarized cases using means for continuous variables and proportions for categorical variables. Associations between admission status, sex, age, residence, time to care seeking, and outbreak settings; and cholera associated deaths were assessed using odds ratio (OR) with 95% confidence interval (CI). Of the 2,737 cholera cases reported, we analyzed 2,347 (85.7%) cases including 1,364 (58.1%) outpatients, 1,724 (73.5%) not associated with mass gathering events, 1,356 (57.8%) male and 2,202 (93.8%) aged ≥5 years, and 35 deaths (case fatality rate: 1.5%). Cases were reported from all the Sub Counties of Nairobi City County with an overall county attack rate of 50 per 100,000 people. Vibrio cholerae Ogawa serotype was isolated from 78 (34.8%) of the 224 specimens tested and all isolates were sensitive to tetracycline and levofloxacin but resistant to amikacin. The odds of cholera-related deaths was lower among outpatient cases (aOR: 0.35; [95% CI: 0.17-0.72]), age ≥5 years old (aOR: 0.21 [95% CI: 0.09-0.55]), and mass gathering events (aOR: 0.26 [95% CI: 0.07-0.91]) while threefold higher odds among male (aOR: 3.04 [95% CI: 1.30-7.13]). Nairobi City County experienced a protracted and widespread cholera outbreak with a high case fatality rate in 2017.


Assuntos
Cólera , Surtos de Doenças , Vibrio cholerae , Humanos , Cólera/epidemiologia , Cólera/microbiologia , Quênia/epidemiologia , Masculino , Feminino , Adulto , Adolescente , Criança , Pré-Escolar , Pessoa de Meia-Idade , Adulto Jovem , Vibrio cholerae/isolamento & purificação , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Idoso
3.
medRxiv ; 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39417149

RESUMO

In September 2022, an outbreak of Sudan virus (SUDV) was confirmed in Uganda. Following the first case report, we developed an individual based modelling platform (IBM-SUDV) to estimate the burden of cases and deaths, as well as the duration of the unfolding SUDV outbreak, using different scenarios. Modelled projections were within the range of cases and deaths ultimately observed.

4.
Viruses ; 16(9)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39339892

RESUMO

Following the detection of highly pathogenic avian influenza (HPAI) virus in countries bordering Kenya to the west, we conducted surveillance among domestic and wild birds along the shores of Lake Victoria. In addition, between 2018 and 2020, we conducted surveillance among poultry and poultry workers in live bird markets and among wild migratory birds in various lakes that are resting sites during migration to assess introduction and circulation of avian influenza viruses in these populations. We tested 7464 specimens (oropharyngeal (OP) and cloacal specimens) from poultry and 6531 fresh fecal specimens from wild birds for influenza A viruses by real-time RT-PCR. Influenza was detected in 3.9% (n = 292) of specimens collected from poultry and 0.2% (n = 10) of fecal specimens from wild birds. On hemagglutinin subtyping, most of the influenza A positives from poultry (274/292, 93.8%) were H9. Of 34 H9 specimens randomly selected for further subtyping, all were H9N2. On phylogenetic analysis, these viruses were genetically similar to other H9 viruses detected in East Africa. Only two of the ten influenza A-positive specimens from the wild bird fecal specimens were successfully subtyped; sequencing analysis of one specimen collected in 2018 was identified as a low-pathogenicity avian influenza H5N2 virus of the Eurasian lineage, and the second specimen, collected in 2020, was subtyped as H11. A total of 18 OP and nasal specimens from poultry workers with acute respiratory illness (12%) were collected; none were positive for influenza A virus. We observed significant circulation of H9N2 influenza viruses in poultry in live bird markets in Kenya. During the same period, low-pathogenic H5N2 virus was detected in a fecal specimen collected in a site hosting a variety of migratory and resident birds. Although HPAI H5N8 was not detected in this survey, these results highlight the potential for the introduction and establishment of highly pathogenic avian influenza viruses in poultry populations and the associated risk of spillover to human populations.


Assuntos
Animais Selvagens , Aves , Fezes , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Filogenia , Aves Domésticas , Animais , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Quênia/epidemiologia , Animais Selvagens/virologia , Aves/virologia , Aves Domésticas/virologia , Fezes/virologia , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Vírus da Influenza A Subtipo H9N2/classificação , Variação Genética , Ecossistema , Humanos
5.
Vaccines (Basel) ; 11(6)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37376501

RESUMO

The prompt administration of post-exposure prophylaxis (PEP) is one of the key strategies for ending human deaths from rabies. A delay in seeking the first dose of rabies PEP, or failure to complete the recommended dosage, may result in clinical rabies and death. We assessed the efficacy of short message system (SMS) phone texts in improving the adherence to scheduled PEP doses among bite patients in rural eastern Kenya. We conducted a single-arm, before-after field trial that compared adherence among bite patients presenting at Makueni Referral Hospital between October and December 2018 (control) and between January and March 2019 (intervention). Data on their demographics, socio-economic status, circumstances surrounding the bite, and expenditures related to the bite were collected. A total of 186 bite patients were enrolled, with 82 (44%) in the intervention group, and 104 (56%) in the control group. The odds of PEP completion were three times (OR 3.37, 95% CI 1.28, 10.20) more likely among patients who received the SMS reminder, compared to the control. The intervention group had better compliance on the scheduled doses 2 to 5, with a mean deviation of 0.18 days compared to 0.79 days for the control group (p = 0.004). The main reasons for non-compliance included lack of funds (30%), and forgetfulness (23%) on days for follow-up treatment, among others. Nearly all (96%, n = 179) the bite patients incurred indirect transport costs, at an average of USD 4 (USD 0-45) per visit. This study suggests that the integration of SMS reminders into healthcare service delivery increases compliance with PEP, and may strengthen rabies control and elimination strategies.

6.
PLOS Glob Public Health ; 3(8): e0002141, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37611028

RESUMO

Robust data on the impact of the COVID-19 pandemic on mortality in Africa are relatively scarce. Using data from two well-characterized populations in Kenya we aimed to estimate excess mortality during the COVID-19 pandemic period. The mortality data arise from an ongoing population-based infectious disease surveillance (PBIDS) platform, which has been operational since 2006 in rural western Kenya (Asembo, Siaya County) and an urban informal settlement (Kibera, Nairobi County), Kenya. PBIDS participants were regularly visited at home (2-3 times a year) by field workers who collected demographic data, including deaths. In addition, verbal autopsy (VA) interviews for all identified deaths are conducted. We estimated all-cause and cause-specific mortality rates before and during the height of the COVID-19 pandemic, and we compared associated mortality rates between the periods using incidence rate ratios. Excess deaths during the COVID-19 period were also estimated by modelling expected deaths in the absence of COVID-19 by applying a negative binomial regression model on historical mortality data from January 2016. Overall and monthly excess deaths were determined using the P-score metric. Spearman correlation was used to assess whether there is a relationship between the generated P-score and COVID-19 positivity rate. The all-cause mortality rate was higher during the COVID-19 period compared to the pre-COVID-19 period in Asembo [9.1 (95% CI, 8.2-10.0) vs. 7.8 (95% CI, 7.3-8.3) per 1000 person-years of observation, pyo]. In Kibera, the all-cause mortality rate was slightly lower during the COVID-19 period compared to the pre-COVID-19 period [2.6 (95% CI, 2.2-3.2 per 1000 pyo) vs. 3.1; 95% CI, 2.7-3.4 per 1000 pyo)]. An increase in all-cause mortality was observed (incidence rate ratio, IRR, 1.16; 95% CI, 1.04-1.31) in Asembo, unlike in Kibera (IRR, 0.88; 95% CI, 0.71-1.09). The notable increase in mortality rate in Asembo was observed among persons aged 50 to 64 years (IRR, 2.62; 95% CI, 1.95-3.52), persons aged 65 years and above (5.47; 95% CI, 4.60-6.50) and among females (IRR, 1.25; 95% CI, 1.07-1.46). These age and gender differences were not observed in Kibera. We observed an increase in the mortality rate due to acute respiratory infection, including pneumonia (IRR, 1.45;95% CI, 1.03-2.04), and a reduction in the mortality rate due to pulmonary tuberculosis (IRR, 0.22; 95% CI, 0.05-0.87) among older children and adults in Asembo. There was no statistically significant change in mortality rates due to leading specific causes of death in Kibera. Overall, during the COVID-19 period observed deaths were higher than expected deaths in Asembo (P-score = 6.0%) and lower than expected in Kibera (P-score = -22.3%).Using well-characterized populations in the two diverse geographic locations, we demonstrate a heterogenous impact of the COVID-19 pandemic on all-cause and cause-specific mortality rates in Kenya. We observed more deaths than expected during the COVID-19 period in our rural site in western Kenya contrary to the urban site in Nairobi, the capital city in Kenya.

7.
Gates Open Res ; 7: 101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37990692

RESUMO

Background: SARS-CoV-2 has extensively spread in cities and rural communities, and studies are needed to quantify exposure in the population. We report seroprevalence of SARS-CoV-2 in two well-characterized populations in Kenya at two time points. These data inform the design and delivery of public health mitigation measures. Methods: Leveraging on existing population based infectious disease surveillance (PBIDS) in two demographically diverse settings, a rural site in western Kenya in Asembo, Siaya County, and an urban informal settlement in Kibera, Nairobi County, we set up a longitudinal cohort of randomly selected households with serial sampling of all consenting household members in March and June/July 2021. Both sites included 1,794 and 1,638 participants in the March and June/July 2021, respectively. Individual seroprevalence of SARS-CoV-2 antibodies was expressed as a percentage of the seropositive among the individuals tested, accounting for household clustering and weighted by the PBIDS age and sex distribution. Results: Overall weighted individual seroprevalence increased from 56.2% (95%CI: 52.1, 60.2%) in March 2021 to 63.9% (95%CI: 59.5, 68.0%) in June 2021 in Kibera. For Asembo, the seroprevalence almost doubled from 26.0% (95%CI: 22.4, 30.0%) in March 2021 to 48.7% (95%CI: 44.3, 53.2%) in July 2021. Seroprevalence was highly heterogeneous by age and geography in these populations-higher seroprevalence was observed in the urban informal settlement (compared to the rural setting), and children aged <10 years had the lowest seroprevalence in both sites. Only 1.2% and 1.6% of the study participants reported receipt of at least one dose of the COVID-19 vaccine by the second round of serosurvey-none by the first round. Conclusions: In these two populations, SARS-CoV-2 seroprevalence increased in the first 16 months of the COVID-19 pandemic in Kenya. It is important to prioritize additional mitigation measures, such as vaccine distribution, in crowded and low socioeconomic settings.

8.
Vaccine ; 41(52): 7695-7704, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38008664

RESUMO

The recently emerged coronavirus disease 2019 (COVID-19) has caused considerable morbidity and mortality worldwide and disrupted health services. We describe the effect of the COVID-19 pandemic on utilization of childhood vaccination services during the pandemic. Using a mixed methods approach combining retrospective data review, a cross-sectional survey, focus group discussions among care givers and key informant interviews among nurses, we collected data between May and September 2021 in Mombasa and Nakuru counties. Overall, there was a <2 % decline in the number of vaccine doses administered during the pandemic period compared to the pre-pandemic period but this was statistically insignificant, both for the pentavalent-1 vaccine (ß = -0.013, p = 0.505) and the pentavalent-3 vaccine (ß = -0.012, p = 0.440). In government health facilities, there was 7.7 % reduction in the number of pentavalent-1 (ß = -0.08, p = 0.010) and 10.4 % reduction in the number of pentavalent-3 (ß = -0.11, p < 0.001) vaccine doses that were administered during the pandemic period. In non-government facilities, there was a 25.8 % increase in the number of pentavalent-1 (ß=0.23, p < 0.001) and 31.0 % increase in the number of pentavalent-3 (ß = -0.27, p < 0.001) vaccine doses that were administered facilities during the pandemic period. The strategies implemented to maintain immunization services during the pandemic period included providing messaging on the availability and importance of staying current with routine vaccination and conducting catch-up vaccinations and vaccination outreaches. Our findings suggest that the COVID-19 pandemic did not impact childhood vaccination services in Mombasa and Nakuru counties in Kenya. The private health facilities cushioned vaccination services against the effects of the pandemic and the strategies that were put in place by the ministry of health ensured continuation of vaccination services and encouraged uptake of the services during the pandemic period in the two counties in Kenya. These findings provide useful information to safeguard vaccination services during future pandemics.


Assuntos
COVID-19 , Resiliência Psicológica , Vacinas , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Pandemias/prevenção & controle , Quênia/epidemiologia , Estudos Transversais , Estudos Retrospectivos , Vacinação , Imunização , Vacinas Combinadas , Programas de Imunização
9.
Sci Rep ; 12(1): 21670, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522381

RESUMO

Using data collected from previous (n = 86) and prospective (n = 132) anthrax outbreaks, we enhanced prior ecological niche models (ENM) and added kernel density estimation (KDE) approaches to identify anthrax hotspots in Kenya. Local indicators of spatial autocorrelation (LISA) identified clusters of administrative wards with a relatively high or low anthrax reporting rate to determine areas of greatest outbreak intensity. Subsequently, we modeled the impact of vaccinating livestock in the identified hotspots as a national control measure. Anthrax suitable areas included high agriculture zones concentrated in the western, southwestern and central highland regions, consisting of 1043 of 1450 administrative wards, covering 18.5% country landmass, and hosting 30% of the approximately 13 million cattle population in the country. Of these, 79 wards covering 5.5% landmass and hosting 9% of the cattle population fell in identified anthrax hotspots. The rest of the 407 administrative wards covering 81.5% of the country landmass, were classified as low anthrax risk areas and consisted of the expansive low agricultural arid and semi-arid regions of the country that hosted 70% of the cattle population, reared under the nomadic pastoralism. Modelling targeted annual vaccination of 90% cattle population in hotspot administrative wards reduced > 23,000 human exposures. These findings support an economically viable first phase of anthrax control program in low-income countries where the disease is endemic, that is focused on enhanced animal and human surveillance in burden hotspots, followed by rapid response to outbreaks anchored on public education, detection and treatment of infected humans, and ring vaccination of livestock. Subsequently, the global anthrax elimination program focused on sustained vaccination and surveillance in livestock in the remaining few hotspots for a prolonged period (> 10 years) may be implemented.


Assuntos
Antraz , Bacillus anthracis , Animais , Bovinos , Humanos , Antraz/epidemiologia , Antraz/prevenção & controle , Antraz/veterinária , Quênia/epidemiologia , Bacillus anthracis/fisiologia , Estudos Prospectivos , Fatores de Risco , Gado , Surtos de Doenças/prevenção & controle , Surtos de Doenças/veterinária
10.
Front Public Health ; 10: 769898, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356016

RESUMO

Background: In Africa, rabies causes an estimated 24,000 human deaths annually. Mass dog vaccinations coupled with timely post-exposure prophylaxis (PEP) for dog-bite patients are the main interventions to eliminate human rabies deaths. A well-informed healthcare workforce and the availability and accessibility of rabies biologicals at health facilities are critical in reducing rabies deaths. We assessed awareness and knowledge regarding rabies and the management of rabies among healthcare workers, and PEP availability in rural eastern Kenya. Methodology: We interviewed 73 healthcare workers from 42 healthcare units in 13 wards in Makueni and Kibwezi West sub-counties, Makueni County, Kenya in November 2018. Data on demographics, years of work experience, knowledge of rabies, management of bite and rabies patients, and availability of rabies biologicals were collected and analyzed. Results: Rabies PEP vaccines were available in only 5 (12%) of 42 health facilities. None of the health facilities had rabies immunoglobulins in stock at the time of the study. PEP was primarily administered intramuscularly, with only 11% (n = 8) of the healthcare workers and 17% (7/42) healthcare facilities aware of the dose-sparing intradermal route. Less than a quarter of the healthcare workers were aware of the World Health Organization categorization of bite wounds that guides the use of PEP. Eighteen percent (n = 13) of healthcare workers reported they would administer PEP for category I exposures even though PEP is not recommended for this category of exposure. Only one of six respondents with acute encephalitis consultation considered rabies as a differential diagnosis highlighting the low index of suspicion for rabies. Conclusion: The availability and use of PEP for rabies was sub-optimal. We identified two urgent needs to support rabies elimination programmes: improving availability and access to PEP; and targeted training of the healthcare workers to improve awareness on bite wound management, judicious use of PEP including appropriate risk assessment following bites and the use of the dose-sparing intradermal route in facilities seeing multiple bite patients. Global and domestic funding plan that address these gaps in the human health sector is needed for efficient rabies elimination in Africa.


Assuntos
Erradicação de Doenças , Necessidades e Demandas de Serviços de Saúde , Raiva , Saúde da População Rural , Animais , Mordeduras e Picadas/terapia , Erradicação de Doenças/métodos , Erradicação de Doenças/organização & administração , Doenças do Cão/prevenção & controle , Doenças do Cão/virologia , Cães , Conhecimentos, Atitudes e Prática em Saúde , Pessoal de Saúde/psicologia , Humanos , Quênia/epidemiologia , Vacinação em Massa/veterinária , Profilaxia Pós-Exposição/provisão & distribuição , Raiva/epidemiologia , Raiva/prevenção & controle , Raiva/veterinária , Vacina Antirrábica/provisão & distribuição
11.
Vaccines (Basel) ; 11(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36679913

RESUMO

Considering the early inequity in global COVID-19 vaccine distribution, we compared the level of population immunity to SARS-CoV-2 with vaccine uptake and refusal between rural and urban Kenya two years after the pandemic onset. A population-based seroprevalence study was conducted in the city of Nairobi (n = 781) and a rural western county (n = 810) between January and February 2022. The overall SARS-CoV-2 seroprevalence was 90.2% (95% CI, 88.6−91.2%), including 96.7% (95% CI, 95.2−97.9%) among urban and 83.6% (95% CI, 80.6−86.0%) among rural populations. A comparison of immunity profiles showed that >50% of the rural population were strongly immunoreactive compared to <20% of the urban population, suggesting more recent infections or vaccinations in the rural population. More than 45% of the vaccine-eligible (≥18 years old) persons had not taken a single dose of the vaccine (hesitancy), including 47.6% and 46.9% of urban and rural participants, respectively. Vaccine refusal was reported in 19.6% of urban and 15.6% of rural participants, attributed to concern about vaccine safety (>75%), inadequate information (26%), and concern about vaccine effectiveness (9%). Less than 2% of vaccine refusers cited religious or cultural beliefs. These findings indicate that despite vaccine inequity, hesitancy, and refusal, herd immunity had been achieved in Kenya and likely other African countries by early 2022, with natural infections likely contributing to most of this immunity. However, vaccine campaigns should be sustained due to the need for repeat boosters associated with waning of SARS-CoV-2 immunity and emergence of immune-evading virus variants.

12.
medRxiv ; 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35262086

RESUMO

Background: Using classical and genomic epidemiology, we tracked the COVID-19 pandemic in Kenya over 23 months to determine the impact of SARS-CoV-2 variants on its progression. Methods: SARS-CoV-2 surveillance and testing data were obtained from the Kenya Ministry of Health, collected daily from 306 health facilities. COVID-19-associated fatality data were also obtained from these health facilities and communities. Whole SARS-CoV-2 genome sequencing were carried out on 1241 specimens. Results: Over the pandemic duration (March 2020 - January 2022) Kenya experienced five waves characterized by attack rates (AR) of between 65.4 and 137.6 per 100,000 persons, and intra-wave case fatality ratios (CFR) averaging 3.5%, two-fold higher than the national average COVID-19 associated CFR. The first two waves that occurred before emergence of global variants of concerns (VoC) had lower AR (65.4 and 118.2 per 100,000). Waves 3, 4, and 5 that occurred during the second year were each dominated by multiple introductions each, of Alpha (74.9% genomes), Delta (98.7%), and Omicron (87.8%) VoCs, respectively. During this phase, government-imposed restrictions failed to alleviate pandemic progression, resulting in higher attack rates spread across the country. Conclusions: The emergence of Alpha, Delta, and Omicron variants was a turning point that resulted in widespread and higher SARS-CoV-2 infections across the country.

13.
Int J Infect Dis ; 112: 25-34, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34481966

RESUMO

BACKGROUND: The lower than expected COVID-19 morbidity and mortality in Africa has been attributed to multiple factors, including weak surveillance. This study estimated the burden of SARS-CoV-2 infections eight months into the epidemic in Nairobi, Kenya. METHODS: A population-based, cross-sectional survey was conducted using multi-stage random sampling to select households within Nairobi in November 2020. Sera from consenting household members were tested for antibodies to SARS-CoV-2. Seroprevalence was estimated after adjusting for population structure and test performance. Infection fatality ratios (IFRs) were calculated by comparing study estimates with reported cases and deaths. RESULTS: Among 1,164 individuals, the adjusted seroprevalence was 34.7% (95% CI 31.8-37.6). Half of the enrolled households had at least one positive participant. Seropositivity increased in more densely populated areas (spearman's r=0.63; p=0.009). Individuals aged 20-59 years had at least two-fold higher seropositivity than those aged 0-9 years. The IFR was 40 per 100,000 infections, with individuals ≥60 years old having higher IFRs. CONCLUSION: Over one-third of Nairobi residents had been exposed to SARS-CoV-2 by November 2020, indicating extensive transmission. However, the IFR was >10-fold lower than that reported in Europe and the USA, supporting the perceived lower morbidity and mortality in sub-Saharan Africa.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Estudos Transversais , Humanos , Quênia/epidemiologia , Pessoa de Meia-Idade , Estudos Soroepidemiológicos
14.
Vaccine ; 37 Suppl 1: A28-A34, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31326251

RESUMO

Prompt provision of post-exposure-prophylaxis (PEP) including vaccines and rabies immunoglobulin (RIG) to persons bitten by suspect rabid dogs is a key strategy to eliminating human deaths from dog-mediated rabies in Kenya by 2030. We assessed the availability, forecasting and supply chain logistics for rabies PEP in Kenya, compared with the system used for vaccines in the expanded program of immunization (routine vaccines). Semi-structured questionnaires capturing data on forecasting, procurement, distribution, cold chain and storage, monitoring and reporting for routine vaccines and rabies vaccines and RIG were administered to 35 key personnel at the national, county, sub-county and health facility levels in five counties. Results showed large variability in PEP availability (stockouts ranged from 3 to 36 weeks per year) with counties implementing rabies elimination activities having shorter stockouts. PEP is administered intramuscularly using the 5-dose Essen regimen (day 0, 3, 7, 14 and 28). PEP costs to bite patients were reported to range from 10 to 15 US dollars per dose; RIG was seldom available. A less robust supply and logistics infrastructure is used for rabies PEP compared to routine vaccines. Forecasting and monitoring mechanisms for rabies PEP was poor in the study counties. The supply of vaccines from the national to the sub-national level is mainly through two government agencies and a private agency. Since government decentralization, the National Vaccine and Immunization Program has remained as the main supplier of the routine vaccines, playing a lesser role in the supply of rabies biologicals. Adoption of the dose-saving intradermal route for PEP administration, reduction of PEP costs to patients, and placing rabies vaccines within the routine vaccines supply and logistics system would significantly improve PEP availability and accessibility to persons at risk of rabies; a critical step to achieving elimination of human deaths from rabies.


Assuntos
Imunoglobulinas , Fatores Imunológicos/provisão & distribuição , Organização e Administração , Profilaxia Pós-Exposição/organização & administração , Vacina Antirrábica/provisão & distribuição , Raiva/prevenção & controle , Acessibilidade aos Serviços de Saúde , Humanos , Quênia , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA