Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Neurosci ; 42(48): 9011-9029, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36198501

RESUMO

Personal space (PS) is the space around the body that people prefer to maintain between themselves and unfamiliar others. Intrusion into personal space evokes discomfort and an urge to move away. Physiologic studies in nonhuman primates suggest that defensive responses to intruding stimuli involve the parietal cortex. We hypothesized that the spatial encoding of interpersonal distance is initially transformed from purely sensory to more egocentric mapping within human parietal cortex. This hypothesis was tested using 7 Tesla (7T) fMRI at high spatial resolution (1.1 mm isotropic), in seven subjects (four females, three males). In response to visual stimuli presented at a range of virtual distances, we found two categories of distance encoding in two corresponding radially-extending columns of activity within parietal cortex. One set of columns (P columns) responded selectively to moving and stationary face images presented at virtual distances that were nearer (but not farther) than each subject's behaviorally-defined personal space boundary. In most P columns, BOLD response amplitudes increased monotonically and nonlinearly with increasing virtual face proximity. In the remaining P columns, BOLD responses decreased with increasing proximity. A second set of parietal columns (D columns) responded selectively to disparity-based distance cues (near or far) in random dot stimuli, similar to disparity-selective columns described previously in occipital cortex. Critically, in parietal cortex, P columns were topographically interdigitated (nonoverlapping) with D columns. These results suggest that visual spatial information is transformed from visual to body-centered (or person-centered) dimensions in multiple local sites within human parietal cortex.SIGNIFICANCE STATEMENT Recent COVID-related social distancing practices highlight the need to better understand brain mechanisms which regulate "personal space" (PS), which is defined by the closest interpersonal distance that is comfortable for an individual. Using high spatial resolution brain imaging, we tested whether a map of external space is transformed from purely visual (3D-based) information to a more egocentric map (related to personal space) in human parietal cortex. We confirmed this transformation and further showed that it was mediated by two mutually segregated sets of columns: one which encoded interpersonal distance and another that encoded visual distance. These results suggest that the cortical transformation of sensory-centered to person-centered encoding of space near the body involves short-range communication across interdigitated columns within parietal cortex.


Assuntos
COVID-19 , Masculino , Animais , Feminino , Humanos , Espaço Pessoal , Lobo Parietal , Mapeamento Encefálico , Imageamento por Ressonância Magnética/métodos
2.
Schizophr Bull ; 48(5): 1075-1084, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35661903

RESUMO

BACKGROUND: Changes in the regulation of interpersonal distance, or "personal space" (PS), have been repeatedly observed in schizophrenia and, in some studies, linked to negative symptoms. However, the neurobiological basis of these impairments is poorly understood. METHODS: Personal space measurements, functional connectivity of a brain network sensitive to intrusions into PS, and symptoms of social withdrawal and anhedonia were assessed, and associations among these outcomes measured, in 33 individuals with a psychotic disorder (primarily schizophrenia [SCZ]) and 36 control subjects (CON). RESULTS: Personal space size was significantly higher (P = .002) and PS permeability (reflecting the capacity to tolerate intrusions into PS) was significantly lower (P = .021) in the SCZ relative to the CON group, and both measures were significantly correlated with social anhedonia and withdrawal in the full sample (all P < .007). Moreover, functional connectivity between the PS and default mode (DM) networks was significantly correlated with the permeability, but not the size, of PS in the full sample and in the SCZ and CON groups separately, and with social withdrawal in the SCZ group. Lastly, the association between PS-DM network connectivity and social withdrawal in the SCZ group was fully mediated by PS permeability. DISCUSSION: Neural and behavioral aspects of PS regulation are linked to social motivation in both healthy individuals and those with psychotic disorders, suggesting that measurements of PS could serve as transdiagnostic markers of social functioning.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Anedonia/fisiologia , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Transtornos Psicóticos/complicações , Esquizofrenia/complicações , Interação Social
3.
J Affect Disord ; 310: 484-492, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35427718

RESUMO

BACKGROUND: Suicide rates among young people have been increasing in recent years, yet no validated methods are available for identifying those who are at greatest risk for suicide. Abnormalities in the medial prefrontal cortex have been previously observed in suicidal individuals, but confounding factors such as treatment and chronic illness may have contributed to these findings. Thus, in this study we tested whether the size of the medial prefrontal cortex is altered in suicidal young adults who have received no treatment with psychotropic medications. METHODS: Suicidality was evaluated using the Suicide Behaviors Questionnaire-Revised (SBQ-R) and surface areas of four regions-of-interest (ROIs) within the medial prefrontal cortex were measured using magnetic resonance imaging (MRI) in a cohort of college students (n = 102). In addition, a secondary seed-based functional connectivity analysis was conducted using resting-state functional MRI data. Areas and functional connectivity of the medial prefrontal cortex of young adults with high suicidality (HS; SBQ-R score > 7; n = 20) were compared to those with low suicidality (LS; SBQ-R score = 3, n = 37). RESULTS: Compared to the LS group, the HS group had a significantly lower surface area of the right frontal pole (p < 0.05, Bonferroni-corrected) and significantly lower functional connectivity of the right frontal pole with the bilateral inferior frontal cortex (p < 0.001, Monte-Carlo corrected). LIMITATION: These findings require replication in a larger sample and extension in younger (adolescent) populations. CONCLUSION: Diminished frontal pole surface area and functional connectivity may be linked to elevated levels of suicidality in young people.


Assuntos
Ideação Suicida , Suicídio , Adolescente , Mapeamento Encefálico , Estudos de Coortes , Lobo Frontal , Humanos , Imageamento por Ressonância Magnética , Córtex Pré-Frontal/diagnóstico por imagem , Adulto Jovem
4.
Neuroimage Clin ; 30: 102585, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33773165

RESUMO

BACKGROUND: Attachment, or affiliative bonding among conspecifics, is thought to involve neural mechanisms underlying behavioral responses to threat and reward-related social signals. However, attachment-oriented responses may also rely on basic sensorimotor processes. One sensorimotor system that may play a role in attachment is the parietofrontal cortical network that responds to stimuli that are near or approaching the body, the peripersonal space (PPS) monitoring system. We hypothesized that this network may vary in responsivity to such potentially harmful stimuli, particularly those with social salience, based on individual differences in attachment styles. METHODS: Young adults viewed images of human faces or cars that appeared to move towards or away from them, while functional magnetic resonance imaging data were collected. Correlations between each of four adult attachment styles, measured using the Relationship Questionnaire, and responses of the PPS network to approaching (versus withdrawing) stimuli were measured. RESULTS: A region-of-interest (ROI) analysis, focused on six cortical regions of the PPS network that showed significant responses to approaching versus withdrawing face stimuli in an independent sample (n = 80), revealed that anxious attachment style (but not the other 3 attachment styles) was significantly positively correlated with responses to faces (but not to cars) in all six ROIs (r = 0.33-0.49, p = 0.01-0.0001, n = 50). CONCLUSIONS: These findings suggest that anxious attachment is associated with over-responsivity of a sensorimotor network involved in attending to social stimuli near the body.


Assuntos
Imageamento por Ressonância Magnética , Espaço Pessoal , Humanos , Individualidade , Percepção , Adulto Jovem
5.
Sci Rep ; 11(1): 20960, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34697390

RESUMO

Personal space has been defined as "the area individuals maintain around themselves into which others cannot intrude without arousing discomfort". However, the precise relationship between discomfort (or arousal) responses as a function of distance from an observer remains incompletely understood. Also the mechanisms involved in recognizing conspecifics and distinguishing them from other objects within personal space have not been identified. Accordingly, here we measured personal space preferences in response to real humans and human-like avatars (in virtual reality), using well-validated "stop distance" procedures. Based on threshold measurements of personal space, we examined within-subject variations in discomfort-related responses across multiple distances (spanning inside and outside each individual's personal space boundary), as reflected by psychological (ratings) and physiological (skin conductance) responses to both humans and avatars. We found that the discomfort-by-distance functions for both humans and avatars were closely fit by a power law. These results suggest that the brain computation of visually-defined personal space begins with a 'rough sketch' stage, which generates responses to a broad range of human-like stimuli, in addition to humans. Analogous processing mechanisms may underlie other brain functions which respond similarly to both real and simulated human body parts.


Assuntos
Espaço Pessoal , Estimulação Luminosa/métodos , Percepção Espacial/fisiologia , Adulto , Feminino , Resposta Galvânica da Pele , Humanos , Masculino , Fenômenos Fisiológicos da Pele , Realidade Virtual , Adulto Jovem
6.
Front Neurosci ; 9: 359, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26500482

RESUMO

In recent years the problem of how inter-individual differences play a role in risk-taking behavior has become a much debated issue. We investigated this problem based on the well-known balloon analog risk task (BART) in 48 healthy subjects in which participants inflate a virtual balloon opting for a higher score in the face of a riskier chance of the balloon explosion. In this study, based on a structural Voxel Based Morphometry (VBM) technique we demonstrate a significant positive correlation between BART score and size of the gray matter volume in the anterior insula in riskier subjects. Although the anterior insula is among the candidate brain areas that were involved in the risk taking behavior in fMRI studies, here based on our structural data it is the only area that was significantly related to structural variation among different subjects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA