Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(3): 2088-2096, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33434246

RESUMO

The methanol-to-hydrocarbons (MTH) process transforms C1 carbon sources to higher hydrocarbons, but details of the mechanism that leads to the formation of the first carbon-carbon bond remain unclear. Here, we present a computational investigation of how a crucial intermediate, dimethyl ether (DME), interacts with different zeolite catalysts (H-ZSM-5, H-Y) to gain insight into the initial stages in the MTH process. We use QM/MM computational simulations to model the conversion of methanol to DME in H-ZSM-5, which is a well characterised and important reaction intermediate. We analyse and compare the stability of DME on several acid sites in H-ZSM-5 and H-Y, and show that the more acidic and open "intersection sites" in the H-ZSM-5 framework are able to bond strongest with DME, with complete deprotonation of the acid site occurring. The conversion of methanol to DME in H-ZSM-5 is calculated as requiring a higher activation energy than framework methoxylation, which indicates that a stepwise (indirect) mechanism, through a methoxy intermediate, is the most likely route to DME formation during the initiation of the MTH process.

2.
Phys Chem Chem Phys ; 23(32): 17634-17644, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34369957

RESUMO

The conversion of methanol-to-hydrocarbons (MTH) is known to occur via an autocatalytic process in zeolites, where framework-bound methoxy species play a pivotal role, especially during catalyst induction. Recent NMR and FT-IR experimental studies suggest that methoxylated zeolites are able to produce hydrocarbons by a mechanism involving carbene migration and association. In order to understand these observations, we have performed QM/MM computational investigations on a range of reaction mechanisms for the reaction of zeolite bound methoxy and carbene groups, which are proposed to initiate hydrocarbon formation in the MTH process. Our simulations demonstrate that it is kinetically unfavourable for methyl species to form on the framework away from the zeolite acid site, and both kinetically and thermodynamically unfavourable for methyl groups to migrate through the framework and aggregate around an acid site. Formation of carbene moieties was considered as an alternative pathway to the formation of C-C bonds; however, the reaction energy for conversion of a methyl to a carbene is unfavourable. Metadynamics simulations help confirm further that methyl species at the framework acid sites would be more reactive towards formed C2+ species, rather than inter-framework migration, and that the role of carbenes in the formation of the first C-C bond will be via a concerted type of mechanism rather than stepwise.

3.
Chem Sci ; 11(26): 6805-6814, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32874523

RESUMO

We evaluate the effect of the number of methanol molecules per acidic site of H-ZSM-5 on the methoxylation reaction at room temperature by applying operando diffuse reflectance infrared Fourier transformed spectroscopy (DRIFTS) and mass spectrometry (MS), which capture the methoxylation reaction by simultaneously probing surface adsorbed species and reaction products, respectively. To this end, the methanol loading in H-ZSM-5 (Si/Al ≈ 25) pores is systematically varied between 32, 16, 8 and 4 molecules per unit cell, which corresponds to 8, 4, 2 and 1 molecules per Brønsted acidic site, respectively. The operando DRIFTS/MS data show that the room temperature methoxylation depends on the methanol loading: the higher the methanol loading, the faster the methoxylation. Accordingly, the reaction is more than an order of magnitude faster with 8 methanol molecules per Brønsted acidic site than that with 2 molecules, as evident from the evolution of the methyl rock band of the methoxy species and of water as a function of time. Significantly, no methoxylation is observed with ≤1 molecule per Brønsted acidic site. However, hydrogen bonded methanol occurs across all loadings studied, but the structure of hydrogen bonded methanol also depends on the loading. Methanol loading of ≤1 molecule per acidic site leads to the formation of hydrogen bonded methanol with no proton transfer (i.e. neutral geometry), while loading ≥2 molecules per acidic site results in a hydrogen bonded methanol with a net positive charge on the adduct (protonated geometry). The infrared vibrational frequencies of methoxy and hydrogen bonded methanol are corroborated by Density Functional Theory (DFT) calculations. Both the experiments and calculations reflect the methoxy bands at around 940, 1180, 2868-2876 and 2980-2973 cm-1 which correspond to ν(C-O), ρ(CH3), ν s(C-H) and ν as(C-H), respectively.

4.
ACS Catal ; 10(15): 8904-8915, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32923027

RESUMO

The methanol-to-hydrocarbon process is known to proceed autocatalytically in H-ZSM-5 after an induction period where framework methoxy species are formed. In this work, we provide mechanistic insight into the framework methylation within H-ZSM-5 at high methanol loadings and varying acid site densities by means of first-principles molecular dynamics simulations. The molecular dynamics simulations show that stable methanol clusters form in the zeolite pores, and these clusters commonly deprotonate the active site; however, the cluster size is dependent on the temperature and acid site density. Enhanced sampling molecular dynamics simulations give evidence that the barrier for methanol conversion is significantly affected by the neighborhood of an additional acid site, suggesting that cooperative effects influence methanol clustering and reactivity. The insights obtained are important steps in optimizing the catalyst and engineering the induction period of the methanol-to-hydrocarbon process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA