RESUMO
Chiral ligand-exchange chromatography is one of the elective strategies for the direct enantioresolution of small chelating compounds: amino acids, diamines, amino alcohols, diols, small peptides, etc. Unlike other methods, the interaction between chiral selector and analyte enantiomers is mediated by a cation, thus producing diastereomeric ternary complexes. Two main approaches are conventionally applied in chiral ligand-exchange chromatography. The first relies upon chiral stationary phases where the chiral selector is either covalently immobilized or physically adsorbed onto suitable packing materials (coated phases). In the second approach, chiral molecules are added to the eluent, thus generating chiral eluent systems. Among the advantages of chiral ligand-exchange chromatography, the generation of UV/vis-active metal complexes, and the use of commercially available or easy-to-synthesize chiral selectors, in combination to rather inexpensive achiral columns for coated phases and chiral eluents, are noteworthy. Besides amino acids and amino alcohols, other species have proven suitable for chiral ligand-exchange chromatography applications. Recently, the use of either chiral ionic liquids or micellar liquid chromatography systems as well as the successful off-column formation of diastereomeric complexes have expanded the selectivity profiles and application fields. All of these issues are touched in the review, shedding light to the contributions appeared in the last decade.
Assuntos
Aminoácidos/isolamento & purificação , Amino Álcoois/isolamento & purificação , Diaminas/isolamento & purificação , Peptídeos/isolamento & purificação , Aminoácidos/química , Amino Álcoois/química , Cromatografia Líquida de Alta Pressão , Diaminas/química , Ligantes , Estrutura Molecular , Peptídeos/químicaRESUMO
The aqueous extract of dry onion skin waste from the 'Dorata di Parma' cultivar was tested as a new source of biomolecules for the production of colored and biofunctional wool yarns, through environmentally friendly dyeing procedures. Specific attention was paid to the antioxidant and UV protection properties of the resulting textiles. On the basis of spectrophotometric and mass spectrometry analyses, the obtained deep red-brown color was assigned to quercetin and its glycoside derivatives. The Folinâ»Ciocalteu method revealed good phenol uptakes on the wool fiber (higher than 27% for the textile after the first dyeing cycle), with respect to the original total content estimated in the water extract (78.50 ± 2.49 mg equivalent gallic acid/g onion skin). The manufactured materials showed remarkable antioxidant activity and ability to protect human skin against lipid peroxidation following UV radiation: 7.65 ± 1.43 (FRAP assay) and 13.60 (ORAC assay) mg equivalent trolox/g textile; lipid peroxidation inhibition up to 89.37%. This photoprotective and antioxidant activity were therefore ascribed to the polyphenol pool contained in the outer dried gold skins of onion. It is worth noting that citofluorimetric analysis demonstrated that the aqueous extract does not have a significative influence on cell viability, neither is capable of inducing a proapoptotic effect.
Assuntos
Antioxidantes/farmacologia , Cebolas/química , Polifenóis/farmacologia , Protetores contra Radiação/farmacologia , Pele/efeitos dos fármacos , Fibra de Lã/análise , Animais , Antioxidantes/química , Sobrevivência Celular , Ácido Gálico , Glicosídeos/química , Glicosídeos/farmacologia , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos da radiação , Espectrometria de Massas , Camundongos , Extratos Vegetais/química , Polifenóis/química , Quercetina/análogos & derivados , Quercetina/química , Células RAW 264.7 , Protetores contra Radiação/química , Pele/efeitos da radiação , Espectrofotometria , Indústria TêxtilRESUMO
In this study, we were interested in comparing the amino acid profile in a specific variety of onion, Rossa da inverno sel. Rojo Duro, produced in two different Italian sites: the Cannara (Umbria region) and Imola (Emilia Romagna region) sites. Onions were cultivated in a comparable manner, mostly in terms of the mineral fertilization, seeding, and harvesting stages, as well as good weed control. Furthermore, in both regions, the plants were irrigated by the water sprinkler method and subjected to similar temperature and weather conditions. A further group of Cannara onions that were grown by micro-irrigation was also evaluated. After the extraction of the free amino acid mixture, an ion-pairing reversed-phase (IP-RP) HPLC method allowed for the separation and the evaporative light scattering detection of almost all the standard proteinogenic amino acids. However, only the peaks corresponding to leucine (Leu), phenylalanine (Phe), and tryptophan (Trp), were present in all the investigated samples and they were unaffected from the matrix interfering peaks. The use of the beeswarm/box plots revealed that the content of Leu and Phe were markedly influenced by the geographical origin of the onions (with *** p.
Assuntos
Irrigação Agrícola/métodos , Leucina/isolamento & purificação , Cebolas/química , Fenilalanina/isolamento & purificação , Triptofano/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Produtos Agrícolas/química , Produtos Agrícolas/metabolismo , Fertilizantes/análise , Geografia , Humanos , Itália , Leucina/metabolismo , Limite de Detecção , Cebolas/metabolismo , Fenilalanina/metabolismo , Extratos Vegetais/química , Triptofano/metabolismoRESUMO
The capacity of nonsteroidal antiinflammatory drugs (NSAIDs) to prevent prostanoids biosynthesis through the inhibition of COX-2 enzyme is related to their structural backbone, based on the fusion of a cis-stilbene unit with a variety of heterocyclic and carbocyclic rings. By this route, a series of new selective COX-2 inhibitors was developed, by maintaining the 4-methylsulfone or 4-methylsulfonamide substituent on the phenyl moiety, essential for their activity. In this frame, two novel propyl sulfoxide derivatives were synthesized, which proved selective and sufficiently potent COX-2 inhibition activity when tested as racemates. In the present study, the use of a cellulose tris(3,5-dichlorophenylcarbamate)-based chiral stationary phase, in a polar-organic mode of elution, enabled the successful enantioseparation of the investigated compounds. The developed chromatography method reveals a useful tool of monitoring in view of a proper forthcoming enantioselective synthetic protocol. Moreover, the optimized chromatographic conditions allowed the isolation of appropriate amounts of single enantiomers for the electronic circular dichroism studies that, coupled with in silico simulations, allowed assessing the absolute configuration of each species.
Assuntos
Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/metabolismo , Sulfóxidos/química , Sulfóxidos/farmacologia , EstereoisomerismoRESUMO
Peptide stereoisomer analysis is of importance for quality control of therapeutic peptides, the analysis of stereochemical integrity of bioactive peptides in food, and the elucidation of the stereochemistry of peptides from a natural chiral pool which often contains one or more D-amino acid residues. In this work, a series of model peptide stereoisomers (enantiomers and diastereomers) were analyzed on a zwitterionic ion-exchanger chiral stationary phase (Chiralpak ZWIX(+) 5 µm), in order to investigate the retention and separation performance for such compounds on this chiral stationary phase and elucidate its utility for this purpose. The goal of the study focused on 1) investigations of the effects of the sample matrix used to dissolve the peptide samples; 2) optimization of the mobile phase (enabling deriving information on factors of relevance for retention and separation); and 3) derivation of structure-selectivity relationships. It turned out that small di- and tripeptides can be well resolved under optimized conditions, typically with resolutions larger than 1.5. The optimized mobile phase often consisted of methanol-tetrahydrofuran-water (49:49:2; v/v/v) with 25 mM formic acid and 12.5 mM diethylamine. This work proposes some guidance on which mobile phases can be most efficiently used for peptide stereoisomer separations on Chiralpak ZWIX. Chirality 28:5-16, 2016. © 2015 Wiley Periodicals, Inc.
Assuntos
Aminoácidos/química , Oligopeptídeos/química , Peptídeos/química , Quinina/química , Estrutura Molecular , Estereoisomerismo , Temperatura , TermodinâmicaRESUMO
CONTEXT: The total antioxidant activity (TAC) may vary considerably between onion cultivars. Immunological effects of onion phenolic compounds are still underestimated. OBJECTIVE: The objective of this study is to determine the total phenol content (TPC) and the relative TAC of three Allium cepa L. (Liliaceae) onion cultivars cultivated in Cannara (Italy): Rossa di Toscana, Borettana di Rovato, and Dorata di Parma, and to evaluate the phenol extracts ability to induce human immune cell proliferation. MATERIALS AND METHODS: TPC was determined by the Folin-Ciocalteu method, TAC with FRAP, TEAC/ABTS, and DPPH methods. Peripheral blood mononuclear cells from healthy human donors were incubated for 24 h at 37 °C with 1 ng/mL of phenolic extract in PBS, immunostained, and then analyzed by 4-color flow cytometry for the phenotypic characterization of T helper cells (CD4+ cells), cytotoxic T lymphocytes (CD8+ cells), T regulatory cells (CD25high CD4+ cells), and natural killer cells/monocytes (CD16+ cells). RESULTS: Rossa di Toscana displayed the highest TPC (6.61 ± 0.87 mg GA equivalents/g onion bulb DW) and the highest TAC with the experienced methods: FRAP, 9.19 ± 2.54 µmol Trolox equivalents/g onion bulb DW; TEAC/ABTS, 21.31 ± 0.41 µmol Trolox equivalents/g onion bulb DW; DPPH, 22.90 ± 0.01 µmol Trolox equivalents/g onion bulb DW. Incubation with Rossa di Toscana extract determined an increase in the frequency of the antitumor/anti-infection NK CD16+ immune cells (23.0 ± 0.4%). DISCUSSION AND CONCLUSIONS: Content of health-promoting phenols and the deriving antioxidant and immunostimulating activity vary considerably among the investigated cultivars. Rossa di Toscana can be considered as a potential functional food.
Assuntos
Antioxidantes/farmacologia , Proliferação de Células/efeitos dos fármacos , Cebolas , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Linfócitos T/efeitos dos fármacos , Antioxidantes/isolamento & purificação , Proliferação de Células/fisiologia , Células Cultivadas , Humanos , Itália , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/fisiologia , Fenóis/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Linfócitos T/fisiologiaRESUMO
To the best of our knowledge enantioselective chromatographic protocols on ß-amino acids with polysaccharide-based chiral stationary phases (CSPs) have not yet appeared in the literature. Therefore, the primary objective of this work was the development of chromatographic methods based on the use of an amylose derivative CSP (Lux Amylose-2), enabling the direct normal-phase (NP) enantioresolution of four fully constrained ß-amino acids. Also, the results obtained with the glycopeptide-type Chirobiotic T column employed in the usual polar-ionic (PI) mode of elution are compared with those achieved with the polysaccharide-based phase. The Lux Amylose-2 column, in combination with alkyl sulfonic acid containing NP eluent systems, prevailed over the Chirobiotic T one, when used under the PI mode of elution, and hence can be considered as the elective choice for the enantioseparation of this class of rigid ß-amino acids. Moreover, the extraordinarily high α (up to 4.60) and R S (up to 10.60) values provided by the polysaccharidic polymer, especially when used with camphor sulfonic acid containing eluent systems, make it also suitable for preparative-scale enantioisolations.
Assuntos
Aminoácidos/química , Aminoácidos/isolamento & purificação , Amilose/química , Cromatografia Líquida de Alta Pressão/métodos , Adsorção , Cromatografia Líquida de Alta Pressão/instrumentação , Peso Molecular , EstereoisomerismoRESUMO
An efficient method for the C3-glucuronidation of bile acids is developed under flow conditions. A modular mesoreactor assisted flow set-up was combined with statistical design of experiments to speed up the optimization of the Koenigs-Knorr reaction in terms of yield, regioselectivity, costs, as well as technical and practical standpoints. Using the optimal conditions, selective glucuronidation of naturally occurring bile acids was successfully achieved offering a new, valuable route to C3-glucuronidated bile acids useful for biological, diagnostic and PK/ADMET investigations.
Assuntos
Ácidos e Sais Biliares/química , Glucuronídeos/química , Ácidos e Sais Biliares/síntese química , Técnicas de Química Sintética/instrumentação , Desenho de Equipamento , Glucuronídeos/síntese química , EstereoisomerismoRESUMO
With the present contribution, we demonstrate that the baseline separation of ketoprofen enantiomers can be successfully achieved (α = 1.09; R(S) = 1.60) in the reversed-phase mode of elution with a commercially available anion-exchange-based chiral stationary phase, incorporating the quinine 2,6-diisopropylphenyl carbamate derivative as the enantioresolving unit. Focused modification of the eluent composition indicated a stereoselective role of hydrophobic and π-π interactions between the selector and selectand units, besides the prime ionic intermolecular interaction. The mechanistic hypotheses based on the chromatographic data were confirmed by in silico molecular dynamic simulations, which allowed us to establish the network of selector-selectand interactions underlying the stereorecognition process at a molecular level. The validated method was successfully used to evaluate the drug content and release profile of ketoprofen-loaded polymeric film, showing drug homogeneous distribution into the film and no preferential interactions between the polymer and one of the enantiomers, with the racemate released at each time point.
Assuntos
Alcaloides de Cinchona/química , Cetoprofeno/química , Cetoprofeno/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Simulação de Dinâmica Molecular , Estrutura Molecular , EstereoisomerismoRESUMO
Mobile phase variables have a deep influence on the chromatographic behavior with polysaccharide-based chiral stationary phases. Basic additives are generally used to minimize peak broadening arising from unwanted interactions between polar solutes and underivatized silanols. However, basic additives can improve enantioselectivity through disruption of hydrogen bonds and modification of the polymer morphology. Acidic additives are incorporated into the mobile phase during the analysis of acidic compounds as efficiency enhancers. Acidic additives can also improve enantioselectivity by minimizing within the chiral recognition site nonenantioselective retention. Peak shape without acidic additive in the eluent could be severely distorted during the analysis of salified compounds. Concentration and type of alcohol modifier can have an effect on the morphology of the polymer. The different winding of the chiral selector, caused by alcohol modifiers of different size/shape, ultimately results in different stereo environment of the chiral cavities in the polymer chain. Trace amounts of water in normal-phase eluents can affect retention time, tailing, and resolution. Deliberate addition of water to the eluent can improve peak resolution and save analysis time and solvent needs. Immobilized-type polysaccharide-derived chiral stationary phases offer new selectivity profiles and often improved enantioselectivity.
Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Preparações Farmacêuticas/química , Polissacarídeos/química , Cromatografia Líquida de Alta Pressão/instrumentação , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Preparações Farmacêuticas/isolamento & purificação , EstereoisomerismoRESUMO
An asymmetric synthetic strategy was designed for the preparation of the four possible diastereoisomers of 3,6-dimethyl-1-(2-methylphenyl)-4-(4-phenoxyphenyl)-4,8-dihydro-1H-pyrazolo[3,4-e][1,4]thiazepin-7-one, a non-steroidal FXR agonist, we recently discovered following a virtual screening approach. The results obtained from an AlphaScreen assay clearly demonstrated that only the isomer endowed with 4R,6S absolute configuration is responsible for the biological activity. A deep investigation of the different putative binding modes adopted by these enantiomerically pure ligands using computational modeling studies confirmed the enantioselectivity of FXR towards this class of molecules.
Assuntos
Receptores Citoplasmáticos e Nucleares/agonistas , Tiazepinas/química , Tiazepinas/farmacologia , Humanos , Ligação Proteica , Pirazóis/síntese química , Pirazóis/química , Pirazóis/farmacologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Estereoisomerismo , Tiazepinas/síntese químicaRESUMO
In the frame of a project aimed at finding non-steroidal farnesoid X receptor (FXR) agonists, we identified 4-(2,4-dimethoxyphenyl)-3,6-dimethyl-1-(2-tolyl)-4,8-dihydro-1H-pyrazole[3,4-e][1,4]thiazepin-7-one (1) as a hit endowed with FXR activity. Most of the compounds synthesised during the hit-to-lead optimisation work were characterised by the presence of two chiral centres and were therefore obtained as mixtures of anti(±)- and syn(±)-diastereoisomers. A restricted sub-set of species harboured with a carboxylic acid group on the distal phenyl ring of the biphenyl (a(±)5 (A1) and s(±)5 (S1)) or the phenoxyphenyl (a(±)6 (A2) and s(±)6 (S2)) moiety at C-4 position of the pyrazole[3,4-e][1,4]thiazepin-7-one core, resulted in suitable diastereo- and enantioresolution with a quinine (QN) carbamate-derived chiral stationary phase (CSP). Differently from the compounds usually analysed with QN-based CSPs, the couples A1/S1 and A2/S2 were atypical selectands, in which the two chiral carbon atoms reside at a remote position with respect to the carboxylic function, the main "point of attack" to the CSP. We produced evidence that the scarcely employed normal-phase (NP) eluent systems represent the elective choice for achieving the simultaneous diastereo- and enantioseparation of this class of compounds over the usually preferred reversed-phase (RP) and polar-organic (PO) modes of elution. Indeed, after the optimisation of the eluent composition, NP conditions allowed to obtain profitable enantioselectivity profiles, along with excellent diastereoselectivity levels (α(A1) = 1.07, R (S)(A1) = 1.15; α(S1) = 1.09, R (S)(S1) = 1.47; α(A2) = 1.08, R (S)(A2) = 1.31; and α(S2) = 1.06, R (S)(S2) = 1.18). The optimised NP methods are suitable for simultaneously providing information on the diastereo- and enantiopurity of the investigated compounds.
Assuntos
Carbamatos/química , Cromatografia Líquida de Alta Pressão/métodos , Quinina/química , Receptores Citoplasmáticos e Nucleares/agonistas , Cromatografia Líquida de Alta Pressão/instrumentação , Ligantes , Estrutura Molecular , EstereoisomerismoRESUMO
Bile acids have emerged as versatile signalling compounds of a complex network of nuclear and membrane receptors regulating various endocrine and paracrine functions. The elucidation of the interconnection between the biological pathways under the bile acid control and manifestations of hepatic and metabolic diseases have extended the scope of this class of steroids for in vivo investigations. In this framework, the design and synthesis of novel biliary derivatives able to modulate a specific receptor requires a deep understanding of both structure-activity and structure-property relationships of bile acids. In this paper, we report the preparation and the critical micellization concentration evaluation of a series of hyodeoxycholic acid derivatives characterized by a diverse side chain length and by the presence of a methyl group at the alpha position with respect to the terminal carboxylic acid moiety. The data collected are instrumental to extend on a quantitative basis, the knowledge of the current structure-property relationships of bile acids and will be fruitful, in combination with models of receptor activity, to design and prioritize the synthesis of novel pharmacokinetically suitable ligands useful in the validation of bile acid-responsive receptors as therapeutic targets.
Assuntos
Ácido Desoxicólico/análogos & derivados , Ácido Desoxicólico/síntese química , Acetilação , Ácidos e Sais Biliares/síntese química , Micelas , Modelos Moleculares , Estrutura Molecular , Relação Quantitativa Estrutura-AtividadeRESUMO
A multi-gram scale protocol for the N-acyl amidation of bile acids with glycine and taurine has been successfully developed under continuous flow processing conditions. Selecting ursodeoxycholic acid (UDCA) as the model compound and N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) as the condensing agent, a modular mesoreactor assisted flow set-up was employed to significantly speed up the optimization of the reaction conditions and the flow scale-up synthesis. The results in terms of yield, in line purification, analysis, and implemented flow set-up for the reaction optimization and large scale production are reported and discussed.
Assuntos
Ácidos e Sais Biliares/química , Glicina/síntese química , Taurina/síntese química , Aminação , Humanos , Estrutura MolecularRESUMO
A virtual screening procedure was applied to the discovery of structurally diverse non-steroidal Farnesoid X Receptor (FXR) agonists. From 117 compounds selected by virtual screening, a total of 47 compounds were found to be FXR agonists, with 34 of them showing activity below a concentration of 20 µM. 1H-Pyrazole[3,4-e][1,4]thiazepin-7-one-based hit compound 7 was chosen for hit-to-lead optimization. A large number of 1H-pyrazole[3,4-e][1,4]thiazepin-7-one derivatives was designed, synthesized, and evaluated by a cell-based luciferase transactivation assay for their agonistic activity against FXR. Most of them exhibited low micromolar range of potency and very high efficacy.
Assuntos
Pirazóis/química , Receptores Citoplasmáticos e Nucleares/agonistas , Relação Estrutura-Atividade , Tiazepinas/síntese química , Tiazepinas/farmacologia , Relação Dose-Resposta a Droga , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Perfilação da Expressão Gênica , Células Hep G2 , Humanos , Luciferases/genética , Luciferases/metabolismo , Modelos Moleculares , Estrutura Molecular , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Interface Usuário-ComputadorRESUMO
Ethyl diazo(3-hydroxy-2-oxo-2,3-dihydro-1H-indol-3-yl)acetate was prepared by aldol-type condensation of ethyl diazoacetate with isatin. A systematic and mechanistic study on the Lewis acid induced decomposition reaction of this valuable diazo precursor was carried out with the aim to gain new insights into the mechanistic aspects of the reaction as well as to further understand the factors and experimental conditions which affect the relative product distribution. The reaction, which may proceed via cationic and noncationic mechanisms, was found to be significantly influenced by the reaction environment determined by the characteristics of the Lewis acid employed, by the ability of the Lewis acid to form a complex with the alcohol functionality of the α-diazo-ß-hydroxy ester, and by the polarity and nucleophilicity of the solvent used.
Assuntos
Indóis/química , Ácidos de Lewis/química , Acetatos/química , ÉsteresRESUMO
In a line of research focused on the design, synthesis and development of new bile acid-based compounds, the physico-chemical profile of the molecules must be thoroughly explored and analyzed. In this scenario, a fast and reliable information on the critical micellar concentration (CMC) of specific compounds through a profitable chromatographic parameter can be of aid to rationally direct the synthesis of new molecular entities, mainly during the early stages of the drug-discovery process. The derived 'chromatographic hydrophobicity index' (CHI), usually employed for a fast access to the log P/log D value of physico-chemically diverse compounds and obtained via RP-gradient elution, was for the first time engaged in the bile acid field. Accordingly, 14 unconjugated bile acids harboured with a different number, position and orientation of hydroxy groups, as well as other substituents onto the steroidal backbone and side chain, were selected to build up a calibration curve. Such a collection of compounds was rationally assembled in order to manage an almost continuous range of CMC values (spanning the spectrophotometrically obtained CMCs between 5 and 25 mM). A high degree of correlation between CMC and CHI values was obtained (R(2) and cross-validated R(xv)(2) of the pCMC vs CHI plot equal to 0.975 and 0.966, respectively). A selected new subset of five confidential research bile acids with experimental CMCs in the range 6-19 mM was finally recruited to validate the proposed method. The high statistical quality of the established mathematical model turned out into a very appreciable predictive power.
Assuntos
Ácidos e Sais Biliares/química , Cromatografia de Fase Reversa/métodos , Micelas , Cromatografia Líquida de Alta Pressão/economia , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/economia , Interações Hidrofóbicas e Hidrofílicas , Modelos Estatísticos , Fatores de TempoRESUMO
Owing to their chelation ability, a series of fully constrained L-Glu analogs formed by the spiro-union of two cyclopropane rings (1-aminospiro[2.2]pentyl-1,4-dicarboxylic acids, ASPED A-D), was submitted to chiral ligand-exchange chromatographic (CLEC) analysis. As the initial step, two methodologically different chiral devices were evaluated. A chiral stationary phase (CSP) obtained by dynamic coating of C(18) chains with the S-trityl-(R)-cysteine ((R)-STC) was used first with this objective. The lack of separation of the enantiomers of ASPED C and D prompted us to utilize the chiral mobile phase (CMP) prepared from O-benzyl-(S)-serine ((S)-OBS). The latter afforded complete separation of the four pairs of enantiomers. For all the pairs, quantum mechanical investigations shed light on the main features responsible for the different enantiomer recognition mechanism with (S)-OBS. The validated analytical method was then fruitfully adopted for semi-preparative-scale isolation of the enantiomers of ASPED C.
Assuntos
Cromatografia por Troca Iônica/métodos , Ácido Glutâmico/isolamento & purificação , Cromatografia por Troca Iônica/instrumentação , Ácidos Dicarboxílicos/química , Ácido Glutâmico/análogos & derivados , Ligantes , Estrutura Molecular , EstereoisomerismoRESUMO
For years, d-amino acids were thought to have a minor function in biological processes compared to that of l-enantiomers. Recently, many studies have shown that d-amino acids are present in high concentrations in microorganisms, plants, mammals and humans and execute specific biological functions. One relevant example is that of d-cysteine, whose hydrogen sulfide-producing properties have been found to protect neurons against oxidative stress and to promote dendritic development. Herein, we introduce a chiral LCMS method for the rapid determination of cysteine enantiomers under polar ionic elution conditions (MeOH/MeCN/H2O 49/49/2 v/v/v, containing 50â¯mM formic acid and 50â¯mM ammonium formate) developed on a Chiralpak® ZWIX(+) chiral stationary phase. Cysteine enantiomers were analysed in biological samples after efficient reduction of the disulfide bond in cystine; the latter was achieved with the use of 1,4-dithio-dl-threitol as a reducing agent. A baseline resolution (RSâ¯=â¯2.7) was obtained, and the d-enantiomer eluted before the l-enantiomer. For the enantioselective analysis, cysteine was labelled with AccQ-Tag reagent, resulting in improved chromatographic behaviour and MS detection sensitivity. The method was validated according to the Food and Drug Administration guidelines. Good linearity was determined in the ranges of 0.05-0.50â¯mg/L for d-cysteine and 0.11-0.56â¯mg/L for l-cysteine. The repeatability and intermediate precision were found to be lower than 4.0%, with trueness ranging from 95.6 to 100.2% for both enantiomers. The LOD and LOQ values were 0.02 and 0.05â¯mg/L for d-cysteine and 0.04 and 0.11â¯mg/L for l-cysteine, respectively. The method was successfully applied to cell culture samples treated with d-cysteine.
Assuntos
Cisteína/análise , Espectrometria de Massas/métodos , Células A549 , Técnicas de Cultura de Células , Cromatografia Líquida de Alta Pressão/métodos , Cisteína/química , Humanos , Limite de Detecção , Oxirredução , Reprodutibilidade dos Testes , EstereoisomerismoRESUMO
The BF(3).Et(2)O-induced decomposition of ethyl 2-diazo-3-hydroxy-3,3-diarylpropanoates, prepared by the addition of a series of benzophenones to ethyl diazo(lithio)acetate, is reported and studied. By using acetonitrile as a solvent, the corresponding N-acyl beta-enamino ester derivatives are obtained in good yields and with a diverse regioselectivity as the result of 1,2-aryl migration in the vinyl cation intermediates. The factors that govern the migratory aptitude as well as the mechanistic aspects of the reaction are discussed.