Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 289, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627624

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) play a crucial role in regulating gene expression vital for the growth and development of plants. Despite this, the role of lncRNAs in Chinese cabbage (Brassica rapa L. ssp. pekinensis) pollen development and male fertility remains poorly understood. RESULTS: In this study, we characterized a recessive genic male sterile mutant (366-2 S), where the delayed degradation of tapetum and the failure of tetrad separation primarily led to the inability to form single microspores, resulting in male sterility. To analyze the role of lncRNAs in pollen development, we conducted a comparative lncRNA sequencing using anthers from the male sterile mutant line (366-2 S) and the wild-type male fertile line (366-2 F). We identified 385 differentially expressed lncRNAs between the 366-2 F and 366-2 S lines, with 172 of them potentially associated with target genes. To further understand the alterations in mRNA expression and explore potential lncRNA-target genes (mRNAs), we performed comparative mRNA transcriptome analysis in the anthers of 366-2 S and 366-2 F at two stages. We identified 1,176 differentially expressed mRNAs. Remarkably, GO analysis revealed significant enrichment in five GO terms, most notably involving mRNAs annotated as pectinesterase and polygalacturonase, which play roles in cell wall degradation. The considerable downregulation of these genes might contribute to the delayed degradation of tapetum in 366-2 S. Furthermore, we identified 15 lncRNA-mRNA modules through Venn diagram analysis. Among them, MSTRG.9997-BraA04g004630.3 C (ß-1,3-glucanase) is associated with callose degradation and tetrad separation. Additionally, MSTRG.5212-BraA02g040020.3 C (pectinesterase) and MSTRG.13,532-BraA05g030320.3 C (pectinesterase) are associated with cell wall degradation of the tapetum, indicating that these three candidate lncRNA-mRNA modules potentially regulate pollen development. CONCLUSION: This study lays the foundation for understanding the roles of lncRNAs in pollen development and for elucidating their molecular mechanisms in regulating male sterility in Chinese cabbage.


Assuntos
Brassica rapa , Brassica , Infertilidade Masculina , RNA Longo não Codificante , Masculino , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Brassica/genética , Perfilação da Expressão Gênica/métodos , Transcriptoma , Fertilidade , Regulação da Expressão Gênica de Plantas , Infertilidade das Plantas/genética
2.
Int J Mol Sci ; 24(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37511608

RESUMO

Clubroot is a soil-borne disease caused by Plasmodiophora brassicae, which can seriously affect the growth and production of cruciferous crops, especially Chinese cabbage crops, worldwide. At present, few studies have been conducted on the molecular mechanism of this disease's resistance response. In this experiment, we analyzed the bioinformation of bra-miR167a, constructed a silencing vector (STTM167a) and an overexpression vector (OE-miR167a), and transformed them to Arabidopsis to confirm the role of miR167a in the clubroot resistance mechanism of Arabidopsis. Afterwards, phenotype analysis and expression level analysis of key genes were conducted on transgenic plants. From the result, we found that the length and number of lateral roots of silence transgenic Arabidopsis STTM167a was higher than that of WT and OE-miR167a. In addition, the STTM167a transgenic Arabidopsis induced up-regulation of disease resistance-related genes (PR1, PR5, MPK3, and MPK6) at 3 days after inoculation. On the other hand, the auxin pathway genes (TIR1, AFB2, and AFB3), which are involved in maintaining the balance of auxin/IAA and auxin response factor (ARF), were down-regulated. These results indicate that bra-miR167a is negative to the development of lateral roots and auxins, but positive to the expression of resistance-related genes. This also means that the STTM167a can improve the resistance of clubroot by promoting lateral root development and the level of auxin, and can induce resistance-related genes by regulating its target genes. We found a positive correlation between miR167a and clubroot disease, which is a new clue for the prevention and treatment of clubroot disease.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Plasmodioforídeos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Doenças das Plantas/genética , Plasmodioforídeos/fisiologia
3.
BMC Genomics ; 22(1): 727, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34620088

RESUMO

BACKGROUND: CONSTANS-like (CO-like, COL) are putative zinc-finger transcription factors known to play vital role in various plant biological processes such as control of flowering time, regulation of plant growth and development and responses to stresses. However, no systematic analysis of COL family gene regarding the plant development and stress response has been previously performed in any solanaceous crop. In the present study, a comprehensive genome-wide analysis of COL family genes in petunia has been conducted to figure out their roles in development of organs and stress response. RESULTS: A total of 33 COL genes, 15 PaCOL genes in P. axillaris and 18 PiCOL genes in P. inflata, were identified in petunia. Subsequently, a genome-wide systematic analysis was performed in 15 PaCOL genes. Considering the domain composition and sequence similarity the 15 PaCOL and 18 PiCOL genes were phylogenetically classified into three groups those are conserved among the flowering plants. Moreover, all of the 15 PaCOL proteins were localized in nucleus. Furthermore, differential expression patterns of PaCOL genes were observed at different developmental stages of petunia. Additionally, transcript expression of 15 PaCOL genes under various abiotic and phytohormone treatments showed their response against stresses. Moreover, several cis-elements related to stress, light-responsive, hormone signaling were also detected in different PaCOL genes. CONCLUSION: The phylogenetic clustering, organ specific expression pattern and stress responsive expression profile of conserved petunia COL genes indicating their involvement in plant growth and development and stress response mechanism. This work provide a significant foundation for understanding the biological roles of petunia COL genes in plant growth, development and in stress response.


Assuntos
Petunia , Regulação da Expressão Gênica de Plantas , Genômica , Petunia/genética , Petunia/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
4.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34575968

RESUMO

Purple-colored leaves in plants attain much interest for their important biological functions and could be a potential source of phenotypic marker in selecting individuals in breeding. The transcriptional profiling helps to precisely identify mechanisms of leaf pigmentation in crop plants. In this study, two genetically unlike rice genotypes, the mutant purple leaf (pl) and wild (WT) were selected for RNA-sequencing and identifying the differentially expressed genes (DEGs) that are regulating purple leaf color. In total, 609 DEGs were identified, of which 513 and 96 genes were up- and down-regulated, respectively. The identified DEGs are categorized into metabolic process, carboxylic acid biosynthesis, phenylpropanoids, and phenylpropanoid biosynthesis process enrichment by GO analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) confirmed their association with phenylpropanoid synthesis, flavonoid synthesis, and phenylalanine metabolism. To explore molecular mechanism of purple leaf color, a set of anthocyanin biosynthetic and regulatory gene expression patterns were checked by qPCR. We found that OsPAL (Os02g0626100, Os02g0626400, Os04g0518400, Os05g0427400 and Os02g0627100), OsF3H (Os03g0122300), OsC4HL (Os05g0320700), and Os4CL5 (Os08g0448000) are associated with anthocyanin biosynthesis, and they were up-regulated in pl leaves. Two members of regulatory MYB genes (OsMYB55; Os05g0553400 and Os08g0428200), two bHLH genes (Os01g0196300 and Os04g0300600), and two WD40 genes (Os11g0132700 and Os11g0610700) also showed up-regulation in pl mutant. These genes might have significant and vital roles in pl leaf coloration and could provide reference materials for further experimentation to confirm the molecular mechanisms of anthocyanin biosynthesis in rice.


Assuntos
Antocianinas/biossíntese , Oryza/genética , Folhas de Planta/genética , Transcriptoma/genética , Antocianinas/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas Mutantes/genética , Oryza/crescimento & desenvolvimento , Pigmentação/genética , Melhoramento Vegetal , Folhas de Planta/crescimento & desenvolvimento , RNA-Seq
5.
BMC Plant Biol ; 20(1): 283, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32560687

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are short non-coding RNAs that can influence gene expression via diverse mechanisms. Tomato is a fruit widely consumed for its flavor, culinary attributes, and high nutritional quality. Tomato fruit are climacteric and fleshy, and their ripening is regulated by endogenous and exogenous signals operating through a coordinated genetic network. Much research has been conducted on mechanisms of tomato fruit ripening, but the roles of miRNA-regulated repression/expression of specific regulatory genes are not well documented. RESULTS: In this study, we demonstrate that miR172 specifically targets four SlAP2 transcription factor genes in tomato. Among them, SlAP2a was repressed by the overexpression of SlmiR172, manifesting in altered flower morphology, development and accelerated ripening. miR172 over-expression lines specifically repressed SlAP2a, enhancing ethylene biosynthesis, fruit color and additional ripening characteristics. Most previously described ripening-regulatory genes, including RIN-MADS, NR, TAGL1 and LeHB-1 were not influenced by miR172 while CNR showed altered expression. CONCLUSIONS: Tomato fruit ripening is directly influenced by miR172 targeting of the APETALA2 transcription factor, SlAP2a, with minimal influence over additional known ripening-regulatory genes. miR172a-guided SlAP2a expression provides insight into another layer of genetic control of ripening and a target for modifying the quality and nutritional value of tomato and possibly other fleshy fruit crops.


Assuntos
Expressão Ectópica do Gene , Frutas/crescimento & desenvolvimento , Proteínas de Homeodomínio/genética , MicroRNAs/genética , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Frutas/genética , Redes Reguladoras de Genes , Proteínas de Homeodomínio/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , MicroRNAs/metabolismo , Proteínas de Plantas/metabolismo
6.
Physiol Mol Biol Plants ; 26(4): 719-731, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32255935

RESUMO

Cytoplasmic male sterility (CMS) is maternally inherited trait, which hinders the ability to produce viable pollen in plants. It serves as a useful tool for hybrid seed production via exploiting heterosis in crops. The molecular mechanism of CMS and fertility restoration has been investigated in different crops. However, limited number of reports is available on comparison of Ogura- and Polima-CMS with their shared maintainer in Chinese cabbage. We performed transcript profiling of sterile Ogura CMS (Tyms), Polima CMS (22m2) and their shared maintainer line (231-330) with an aim to identify genes associated with male sterility. In this work, we identified 912, 7199 and 6381 DEGs (Differentially Expressed Genes) in 22m2 Vs Tyms, 231-330 VS 22m2 and 231-330 Vs Tyms, respectively. The GO (Gene Ontology) annotation and KEGG pathway analysis suggested that most of the DEGs were involved in pollen development, carbon metabolism, lipase activity, lipid binding, penta-tricopeptide repeat (PPR), citrate cycle and oxidative phosphorylation, which were down-regulated in both CMS lines. This result will provide an important resource for further understanding of functional pollen development, the CMS mechanism and to improve molecular breeding in Chinese cabbage.

7.
BMC Genet ; 20(1): 42, 2019 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-31029104

RESUMO

BACKGROUND: Cabbage (Brassica oleracea var. capitata) is popular worldwide for consumption as a leafy vegetable. Premature flowering is triggered by low temperature, and deteriorates quality of cabbage as vegetable. In general, growers prefer late-flowering varieties to assure good quality compact head. Here, we report BoFLC1.C9 as a gene with clear sequence variation between cabbage lines with different flowering times, and proposed as molecular marker to characterize early- and late-flowering cabbage lines. RESULTS: We identified sequence variation of 67 bp insertions in intron 2, which were contributed in flowering time variation between two inbred lines through rapid down-regulation of the BoFLC1.C9 gene in early-flowering line compared to late-flowering one upon vernalization. One set of primer 'F7R7' proposed as marker, of which was explained with 83 and 80% of flowering time variation in 141 F2 individuals and 20 commercial lines, respectively. CONCLUSIONS: This F7R7 marker could be used as genetic tools to characterize flowering time variation and to select as well to develop early- and late-flowering cabbage cultivars.


Assuntos
Brassica/genética , Flores/genética , Genes de Plantas , Variação Genética , Genótipo , Desenvolvimento Vegetal/genética , Brassica/classificação , Regulação da Expressão Gênica de Plantas , Íntrons , Filogenia , Polimorfismo Genético
8.
Int J Mol Sci ; 20(7)2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30959810

RESUMO

Leaf senescence is the last period of leaf growth and a dynamic procedure associated with its death. The adaptability of the plants to changing environments occurs thanks to leaf senescence. Hence, transcriptional profiling is important to figure out the exact mechanisms of inducing leaf senescence in a particular crop, such as rice. From this perspective, leaf samples of two different rice genotypes, the brown midrib leaf (bml) mutant and its wild type (WT) were sampled for transcriptional profiling to identify differentially-expressed genes (DEGs). We identified 2670 DEGs, among which 1657 genes were up- and 1013 genes were down-regulated. These DEGs were enriched in binding and catalytic activity, followed by the single organism process and metabolic process through gene ontology (GO), while the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the DEGs were related to the plant hormone signal transduction and photosynthetic pathway enrichment. The expression pattern and the clustering of DEGs revealed that the WRKY and NAC family, as well as zinc finger transcription factors, had greater effects on early-senescence of leaf compared to other transcription factors. These findings will help to elucidate the precise functional role of bml rice mutant in the early-leaf senescence.


Assuntos
Perfilação da Expressão Gênica , Mutação/genética , Oryza/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/genética , Transcriptoma/genética , Análise por Conglomerados , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Fenótipo
9.
Int J Mol Sci ; 19(3)2018 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-29495391

RESUMO

Anthocyanins are the resultant end-point metabolites of phenylapropanoid/flavonoid (F/P) pathway which is regulated at transcriptional level via a series of structural genes. Identifying the key genes and their potential interactions can provide us with the clue for novel points of intervention for improvement of the trait in strawberry. We profiled the expressions of putative regulatory and biosynthetic genes of cultivated strawberry in three developmental and characteristically colored stages of fruits of contrastingly anthocyanin rich cultivars: Tokun, Maehyang and Soelhyang. Besides FaMYB10, a well-characterized positive regulator, FaMYB5, FabHLH3 and FabHLH3-delta might also act as potential positive regulators, while FaMYB11, FaMYB9, FabHLH33 and FaWD44-1 as potential negative regulators of anthocyanin biosynthesis in these high-anthocyanin cultivars. Among the early BGs, Fa4CL7, FaF3H, FaCHI1, FaCHI3, and FaCHS, and among the late BGs, FaDFR4-3, FaLDOX, and FaUFGT2 showed significantly higher expression in ripe fruits of high anthocyanin cultivars Maehyang and Soelhyang. Multivariate analysis revealed the association of these genes with total anthocyanins. Increasingly higher expressions of the key genes along the pathway indicates the progressive intensification of pathway flux leading to final higher accumulation of anthocyanins. Identification of these key genetic determinants of anthocyanin regulation and biosynthesis in Korean cultivars will be helpful in designing crop improvement programs.


Assuntos
Antocianinas/biossíntese , Fragaria/genética , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Pigmentos Biológicos/genética , Flavonoides/metabolismo , Fragaria/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Estudos de Associação Genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
10.
BMC Genomics ; 18(1): 885, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29145809

RESUMO

BACKGROUND: Protein disulfide isomerase (PDI) and PDI-like proteins contain thioredoxin domains that catalyze protein disulfide bond, inhibit aggregation of misfolded proteins, and function in isomerization during protein folding in endoplasmic reticulum and responses during abiotic stresses.Chinese cabbage is widely recognized as an economically important, nutritious vegetable, but its yield is severely hampered by various biotic and abiotic stresses. Because of, it is prime need to identify those genes whose are responsible for biotic and abiotic stress tolerance. PDI family genes are among of them. RESULTS: We have identified 32 PDI genes from the Br135K microarray dataset, NCBI and BRAD database, and in silico characterized their sequences. Expression profiling of those genes was performed using cDNA of plant samples imposed to abiotic stresses; cold, salt, drought and ABA (Abscisic Acid) and biotic stress; Fusarium oxysporum f. sp. conglutinans infection. The Chinese cabbage PDI genes were clustered in eleven groups in phylogeny. Among them, 15 PDI genes were ubiquitously expressed in various organs, while 24 PDI genes were up-regulated under salt and drought stress. By contrast, cold and ABA stress responsive gene number were ten and nine, respectively. In case of F. oxysporum f. sp. conglutinans infection 14 BrPDI genes were highly up-regulated. Interestingly, BrPDI1-1 gene was identified as putative candidate against abiotic (salt and drought) and biotic stresses, BrPDI5-2 gene for ABA stress, and BrPDI1-4, 6-1 and 9-2 were putative candidate genes for both cold and chilling injury stresses. CONCLUSIONS: Our findings help to elucidate the involvement of PDI genes in stress responses, and they lay the foundation for functional genomics in future studies and molecular breeding of Brassica rapa crops. The stress-responsive PDI genes could be potential resources for molecular breeding of Brassica crops resistant to biotic and abiotic stresses.


Assuntos
Brassica rapa/genética , Genoma de Planta , Família Multigênica , Isomerases de Dissulfetos de Proteínas/genética , Motivos de Aminoácidos , Brassica rapa/enzimologia , Brassica rapa/metabolismo , Cromossomos de Plantas , Temperatura Baixa , Éxons , Perfilação da Expressão Gênica , Íntrons , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Isomerases de Dissulfetos de Proteínas/classificação , Domínios Proteicos , Estresse Fisiológico/genética , Sintenia
11.
BMC Genomics ; 18(1): 695, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28874115

RESUMO

BACKGROUND: Zinc finger homeodomain proteins (ZHD) constitute a plant-specific transcription factor family with a conserved DNA binding homeodomain and a zinc finger motif. Members of the ZHD protein family play important roles in plant growth, development, and stress responses. Genome-wide characterization of ZHD genes has been carried out in several model plants, including Arabidopsis thaliana and Oryza sativa, but not yet in tomato (Solanum lycopersicum). RESULTS: In this study, we performed the first comprehensive genome-wide characterization and expression profiling of the ZHD gene family in tomato (Solanum lycopersicum). We identified 22 SlZHD genes and classified them into six subfamilies based on phylogeny. The SlZHD genes were generally conserved in each subfamily, with minor variations in gene structure and motif distribution. The 22 SlZHD genes were distributed on six of the 12 tomato chromosomes, with segmental duplication detected in four genes. Analysis of Ka/Ks ratios revealed that the duplicated genes are under negative or purifying selection. Comprehensive expression analysis revealed that the SlZHD genes are widely expressed in various tissues, with most genes preferentially expressed in flower buds compared to other tissues. Moreover, many of the genes are responsive to abiotic stress and phytohormone treatment. CONCLUSION: Systematic analysis revealed structural diversity among tomato ZHD proteins, which indicates the possibility for diverse roles of SlZHD genes in different developmental stages as well as in response to abiotic stresses. Our expression analysis of SlZHD genes in various tissues/organs and under various abiotic stress and phytohormone treatments sheds light on their functional divergence. Our findings represent a valuable resource for further analysis to explore the biological functions of tomato ZHD genes.


Assuntos
Perfilação da Expressão Gênica , Genômica , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Solanum lycopersicum/genética , Estresse Fisiológico/genética , Dedos de Zinco , Cromossomos de Plantas/genética , Duplicação Gênica , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/fisiologia , Especificidade de Órgãos , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Sintenia/genética
12.
BMC Plant Biol ; 17(1): 23, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28122509

RESUMO

BACKGROUND: Plants contain a range of aquaporin (AQP) proteins, which act as transporter of water and nutrient molecules through living membranes. AQPs also participate in water uptake through the roots and contribute to water homeostasis in leaves. RESULTS: In this study, we identified 59 AQP genes in the B. rapa database and Br135K microarray dataset. Phylogenetic analysis revealed four distinct subfamilies of AQP genes: plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), NOD26-like intrinsic proteins (NIPs) and small basic intrinsic proteins (SIPs). Microarray analysis showed that the majority of PIP subfamily genes had differential transcript abundance between two B. rapa inbred lines Chiifu and Kenshin that differ in their susceptibility to cold. In addition, all BrPIP genes showed organ-specific expression. Out of 22 genes, 12, 7 and 17 were up-regulated in response to cold, drought and salt stresses, respectively. In addition, 18 BrPIP genes were up-regulated under ABA treatment and 4 BrPIP genes were up-regulated upon F. oxysporum f. sp. conglutinans infection. Moreover, all BrPIP genes showed down-regulation under waterlogging stress, reflecting likely the inactivation of AQPs controlling symplastic water movement. CONCLUSIONS: This study provides a comprehensive analysis of AQPs in B. rapa and details the expression of 22 members of the BrPIP subfamily. These results provide insight into stress-related biological functions of each PIP gene of the AQP family, which will promote B. rapa breeding programs.


Assuntos
Aquaporinas/genética , Brassica rapa/genética , Genes de Plantas , Proteínas de Plantas/genética , Mapeamento Cromossômico , Cromossomos de Plantas , DNA de Plantas , Éxons , Perfilação da Expressão Gênica , Íntrons , Oxigênio/metabolismo , Filogenia , Análise Serial de Proteínas , Análise de Sequência de DNA , Estresse Fisiológico
13.
Int J Mol Sci ; 18(5)2017 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-28505092

RESUMO

Growth regulating factors (GRFs) are plant-specific transcription factors that are involved in diverse biological and physiological processes, such as growth, development and stress and hormone responses. However, the roles of GRFs in vegetative and reproductive growth, development and stress responses in tomato (Solanum lycopersicum) have not been extensively explored. In this study, we characterized the 13 SlGRF genes. In silico analysis of protein motif organization, intron-exon distribution, and phylogenetic classification confirmed the presence of GRF proteins in tomato. The tissue-specific expression analysis revealed that most of the SlGRF genes were preferentially expressed in young and growing tissues such as flower buds and meristems, suggesting that SlGRFs are important during growth and development of these tissues. Some of the SlGRF genes were preferentially expressed in fruits at distinct developmental stages suggesting their involvement in fruit development and the ripening process. The strong and differential expression of different SlGRFs under NaCl, drought, heat, cold, abscisic acid (ABA), and jasmonic acid (JA) treatment, predict possible functions for these genes in stress responses in addition to their growth regulatory functions. Further, differential expression of SlGRF genes upon gibberellic acid (GA3) treatment indicates their probable function in flower development and stress responses through a gibberellic acid (GA)-mediated pathway. The results of this study provide a basis for further functional analysis and characterization of this important gene family in tomato.


Assuntos
Meristema/genética , Reguladores de Crescimento de Plantas/genética , Solanum lycopersicum/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos/genética , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/crescimento & desenvolvimento , Meristema/crescimento & desenvolvimento , Família Multigênica/genética , Filogenia , Alinhamento de Sequência
14.
Molecules ; 22(12)2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-29292765

RESUMO

The color of tomato (Solanum lycopersicum) fruit flesh is often used as an indicator of quality. Generally, fruit color is determined by the accumulation of carotenoids and flavonoids, along with concomitant degradation of chlorophylls during ripening. Several genes, such as phytoenesynthetase1 (Psy1), STAY-GREEN (SGR), and SlMYB12, have been extensively studied to elucidate the genes controlling fruit coloration. In this study, we observed low carotenoid levels without degradation of chlorophylls in green-fruited tomato caused by mutations in three genes, Psy1, SGR, and SlMYB12. We crossed two inbred lines, BUC30 (green-fruited) and KNR3 (red-fruited), to confirm the causal effects of these mutations on fruit coloration. The F2 population segregated for eight different fruit colors in the proportions expected for three pairs of gene, as confirmed by a chi-square test. Therefore, we developed a population of tomato with diverse fruit colors and used molecular markers to detect the genes responsible for the individual fruit colors. These newly-designed DNA-based markers can be used for selecting desired fruit color genotypes within adapted breeding materials and cultivars for breeding.


Assuntos
Frutas/genética , Solanum lycopersicum/genética , Sequência de Bases , Carotenoides/genética , Carotenoides/metabolismo , Clorofila/genética , Cor , Flavonoides/genética , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/metabolismo , Mutação , Pigmentação , Proteínas de Plantas/genética
15.
ScientificWorldJournal ; 2014: 968796, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25197722

RESUMO

Genetic diversity is important for crop improvement. An experiment was conducted during 2011 to study genetic variability, character association, and genetic diversity among 27 soybean mutants and four mother genotypes. Analysis of variance revealed significant differences among the mutants and mothers for nine morphological traits. Eighteen mutants performed superiorly to their mothers in respect to seed yield and some morphological traits including yield attributes. Narrow differences between phenotypic and genotypic coefficients of variation (PCV and GCV) for most of the characters revealed less environmental influence on their expression. High values of heritability and genetic advance with high GCV for branch number, plant height, pod number, and seed weight can be considered as favorable attributes for soybean improvement through phenotypic selection and high expected genetic gain can be achieved. Pod and seed number and maturity period appeared to be the first order traits for higher yield and priority should be given in selection due to their strong associations and high magnitudes of direct effects on yield. Cluster analysis grouped 31 genotypes into five groups at the coefficient value of 235. The mutants/genotypes from cluster I and cluster II could be used for hybridization program with the mutants of clusters IV and V in order to develop high yielding mutant-derived soybean varieties for further improvement.


Assuntos
Variação Genética , Glycine max/anatomia & histologia , Glycine max/genética , Fenótipo , Agricultura/métodos , Análise de Variância , Bangladesh , Cruzamento/métodos , Análise por Conglomerados , Genótipo , Mutação/genética , Característica Quantitativa Herdável , Sementes/crescimento & desenvolvimento , Glycine max/classificação , Glycine max/crescimento & desenvolvimento
16.
Front Plant Sci ; 15: 1355090, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828217

RESUMO

Clubroot disease poses a significant threat to Brassica crops, necessitating ongoing updates on resistance gene sources. In F2 segregants of the clubroot-resistant inbred line BrT18-6-4-3 and susceptible DH line Y510, the genetic analysis identified a single dominant gene responsible for clubroot resistance. Through bulk segregant sequencing analysis and kompetitive allele-specific polymerase chain reaction assays, CRA8.1.6 was mapped within 110 kb (12,255-12,365 Mb) between markers L-CR11 and L-CR12 on chromosome A08. We identified B raA08g015220.3.5C as the candidate gene of CRA8.1.6. Upon comparison with the sequence of disease-resistant material BrT18-6-4-3, we found 249 single-nucleotide polymorphisms, seven insertions, six deletions, and a long terminal repeat (LTR) retrotransposon (5,310 bp) at 909 bp of the first intron. However, the LTR retrotransposon was absent in the coding sequence of the susceptible DH line Y510. Given the presence of a non-functional LTR insertion in other materials, it showed that the LTR insertion might not be associated with susceptibility. Sequence alignment analysis revealed that the fourth exon of the susceptible line harbored two deletions and an insertion, resulting in a frameshift mutation at 8,551 bp, leading to translation termination at the leucine-rich repeat domain's C-terminal in susceptible material. Sequence alignment of the CDS revealed a 99.4% similarity to Crr1a, which indicate that CRA8.1.6 is likely an allele of the Crr1a gene. Two functional markers, CRA08-InDel and CRA08-KASP1, have been developed for marker-assisted selection in CR turnip cultivars. Our findings could facilitate the development of clubroot-resistance turnip cultivars through marker-assisted selection.

17.
Plant Physiol Biochem ; 206: 108224, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38091930

RESUMO

The world's low-lying rice (Oryza sativa) cultivation areas are under threat of submergence or flash flooding due to global warming. Rice plants manifest a variety of physiological and morphological changes to cope with submergence and hypoxia, including lowering carbohydrate consumption, inhibiting shoot elongation, and forming a thicker leaf gas film during submergence. Functional studies have revealed that submergence tolerance in rice is mainly determined by an ethylene response factor (ERF) transcription factor-encoding gene, namely SUBMERGENCE 1A-1 (SUB1A-1) located in the SUB1 quantitative trait locus. The SUB1A-1-dependent submergence tolerance is manifested through hormonal signaling involving ethylene, gibberellic acid, brassinosteroid, auxin and jasmonic acid. Considerable progress has been made toward the introduction of SUB1A-1 into rice varieties through a conventional marker-assisted backcrossing approach. Here, we review the recent advances in the physiological, biochemical and molecular dynamics of rice submergence tolerance mediated by the 'quiescence strategy'. Thus, the present review aims to provide researchers with insights into the genetics of rice submergence tolerance and future perspectives for designing submergence-resilient plants for sustainable agriculture under the uncertainties of climate change.


Assuntos
Oryza , Oryza/fisiologia , Etilenos/farmacologia , Genes de Plantas , Folhas de Planta/fisiologia , Adaptação Fisiológica/genética
18.
Plants (Basel) ; 10(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34685858

RESUMO

Bacterial blight (BB) is caused by Xanthomonas oryzae pv. oryzae and is one of the most important diseases in rice. It results in significantly reduced productivity throughout all rice-growing regions of the world. Four BB resistance genes have been reported; however, introgression of a single gene into rice has not been able to sufficiently protect rice against BB infection. Pyramiding of effective BB resistance genes (i.e., Xa genes) into background varieties is a potential approach to controlling BB infection. In this study, combinations of four BB resistance genes, Xa4, xa5, xa13, and Xa21, were pyramided into populations. The populations were derived from crossing Ciherang (a widespread Indonesian rice variety) with IRBB60 (resistance to BB). Promising recombinants from the F6 generation were identified by scoring the phenotype against three virulent bacterial strains, C5, P6, and V, which cause widespread BB infection in most rice-growing countries. Pyramiding of genes for BB resistance in 265 recombinant introgressed lines (RILs) were confirmed through marker-assisted selection (MAS) of the F5 and F6 generations using gene-specific primers. Of these 265 RILs, 11, 34 and 45 lines had four, three, or two BB resistance genes, respectively. The RILs had pyramiding of two or three resistance genes, with the Xa4 resistance gene showing broad spectrum resistance against Xoo races with higher agronomic performance compared to their donor and recipients parents. The developed BB-resistant RILs have high yield potential to be further developed for cultivation or as sources of BB resistance donor material for varietal improvement in other rice lines.

19.
Funct Plant Biol ; 48(2): 141-155, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32926830

RESUMO

Phytoene synthase (PSY) is the first committed enzyme in carotenoid biosynthesis, which plays important role in ripen fruit colour. However, the roles of CaPSY genes are not explained detail in ripen pepper fruit colour. In this study, three CaPSY genes (CaPSY1, CaPSY2 and CaPSY3) were identified through basic local alignment search tool (BLAST) in pepper genome. Among them, CaPSY1 was predicted as putative candidate based on relative expression values using five developmental stages of fruit in Zunla-1 cultivar and also in ripen fruits of five contrasting pepper lines. The CaPSY1 was characterised functionally through virus-induced gene silencing (VIGS) in ripen fruits and overexpression in Arabidopsis thaliana (L.) Heynh. Silencing of CaPSY1 gene altered colour with increased lutein and decreased zeaxanthin content in pepper fruits. The transgenic Arabidopsis line CaPSY1 gene showed higher expression of PSY1 gene compared with WT and dwarf phenotype due to reduction of GA3 (gibberellic acid) and higher abscisic acid (ABA) content. Our results confirmed that CaPSY1 gene involved in carotenoid metabolism in ripen pepper fruit and provide clue to develop bright red coloured pepper lines through breeding.


Assuntos
Capsicum , Capsicum/genética , Carotenoides , Frutas/genética , Melhoramento Vegetal , Verduras
20.
Funct Plant Biol ; 48(1): 103-118, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32780986

RESUMO

Clubroot is a devastating disease of Brassicaceae caused by the biotrophic protist Plasmodiophora brassicae. The progression of clubroot disease is modulated by the glucosinolate (GSL) profile of the host plant. GSL is hydrolysed by the enzyme myrosinase upon cell disruption and gives rise to metabolites like isothiocyanate, nitriles, thiocyanates, epithionitriles and oxazolidines. Some of these metabolites play important roles in the plant's defence mechanism. We identified 13 Myrosinase (Myro) and 28 Myrosinase-Binding Protein-like (MBP) genes from Brassica oleracea L. using a comparative genomics approach and characterised them through in silico analyses. We compared the expression patterns of these genes in a clubroot-susceptible line and a resistant line following inoculation with P. brassicae. Two BolMyro and 12 BolMBP genes were highly expressed in the susceptible line, whereas only one BolMyro and five BolMBP genes were highly expressed in the resistant line. Principal component analysis confirmed that specific GSL profiles and gene expression were modulated due to pathogen infection. Plants with higher levels of neoglucobrassicin, glucobrassicin and methooxyglucobrassicin produced disease symptoms and formed galls, whereas, plants with higher levels of sinigrin, hydroxyglucobrassicin and progoitrin produced less symptoms with almost no galls. Our results provide insights into the roles of Myro and MBP genes in GSL hydrolysis during P. brassicae infection, which will help for developing clubroot resistant cabbage lines.


Assuntos
Brassica , Plasmodioforídeos , Brassica/genética , Expressão Gênica , Glucosinolatos , Glicosídeo Hidrolases , Doenças das Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA