Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Nature ; 598(7879): 72-75, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34425584

RESUMO

Metal-metal bonding is a widely studied area of chemistry1-3, and has become a mature field spanning numerous d transition metal and main group complexes4-7. By contrast, actinide-actinide bonding, which is predicted to be weak8, is currently restricted to spectroscopically detected gas-phase U2 and Th2 (refs. 9,10), U2H2 and U2H4 in frozen matrices at 6-7 K (refs. 11,12), or fullerene-encapsulated U2 (ref. 13). Furthermore, attempts to prepare thorium-thorium bonds in frozen matrices have produced only ThHn (n = 1-4)14. Thus, there are no isolable actinide-actinide bonds under normal conditions. Computational investigations have explored the probable nature of actinide-actinide bonding15, concentrating on localized σ-, π-, and δ-bonding models paralleling d transition metal analogues, but predictions in relativistic regimes are challenging and have remained experimentally unverified. Here, we report thorium-thorium bonding in a crystalline cluster, prepared and isolated under normal experimental conditions. The cluster exhibits a diamagnetic, closed-shell singlet ground state with a valence-delocalized three-centre-two-electron σ-aromatic bond16,17 that is counter to the focus of previous theoretical predictions. The experimental discovery of actinide σ-aromatic bonding adds to main group and d transition metal analogues, extending delocalized σ-aromatic bonding to the heaviest elements in the periodic table and to principal quantum number six, and constitutes a new approach to elaborate actinide-actinide bonding.

2.
Chemistry ; 30(7): e202303289, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37899311

RESUMO

Formamides are important feedstocks for the manufacture of many fine chemicals. State-of-the-art synthesis of formamides relies on the use of an excess amount of reagents, giving copious waste and thus poor atom-economy. Here, we report the first example of direct synthesis of N-formamides by coupling two challenging reactions, namely reductive amination of carbonyl compounds, particularly biomass-derived aldehydes and ketones, and fixation of CO2 in the presence of H2 over a metal-organic framework supported ruthenium catalyst, Ru/MFM-300(Cr). Highly selective production of N-formamides has been observed for a wide range of carbonyl compounds. Synchrotron X-ray powder diffraction reveals the presence of strong host-guest binding interactions via hydrogen bonding and parallel-displaced π⋅⋅⋅π interactions between the catalyst and adsorbed substrates facilitating the activation of substrates and promoting selectivity to formamides. The use of multifunctional porous catalysts to integrate CO2 utilisation in the synthesis of formamide products will have a significant impact in the sustainable synthesis of feedstock chemicals.

3.
Inorg Chem ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38986132

RESUMO

The assessment of trivalent lanthanide yields from the fission of uranium-235 is currently achieved using LN (LaNthanide) resin, di(2-ethylhexyl)orthophosphoric acid immobilized on a solid support. However, coelution of lighter lanthanides into terbium (Tb3+) fractions remains a significant problem in recovery of analytically pure fractions. In order to understand how the separation of trivalent lanthanides and yttrium (Ln3+) with LN resin proceeds and how to improve it, their speciation with the organic extractant HDEHP must be fully understood under aqueous conditions. A comprehensive luminescence analysis of aqueous solutions of Ln3+ in contact with HDEHP, along with infrared spectroscopy, elemental combustion analysis, inductively coupled plasma atomic emission spectroscopy (ICP-AES), and mass spectrometry, was used to indicate that an intermediate species is responsible for the coelution; where similar Ln3+ centers (e.g., Eu3+ and Tb3+) are bridged by the O-P-O moiety of deprotonated HDEHP to form large heteronuclear oligomeric structures with the general formula [Ln2(DEHP)6]n. Energy transfer from Tb3+ to Eu3+ in this structure confirms that lanthanide centers are within 10 Å and was used to propose that the oligomeric [Ln2(DEHP)6]n structure is formed rather than a dimeric Ln2(DEHP)6 structure. The effect of this speciation on LN resin column elution is investigated using luminescence spectroscopy, confirming that the oligomeric [Ln2(DEHP)6]n species could disrupt regular elution behavior and cause the problematic bleeding of lighter lanthanides (Sm3+ and Eu3+) into Tb3+ fractions. Resin luminescence measurements were used to propose that the bleeding of the organic extractant HDEHP from its solid support causes the formation of the disruptive oligometallic species.

4.
Angew Chem Int Ed Engl ; : e202407979, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38818676

RESUMO

Radical ipso-substitution offers an alternative to organometallic approaches for biaryl synthesis, but usually requires stoichiometric reagents such as tributyltin hydride. Here, we demonstrate that visible light photoredox catalysis can be used for ipso-biaryl synthesis, via a halogen-atom transfer (XAT) regime. Using amide substrates that promote ipso- over unwanted ortho-addition, we demonstrate smooth biaryl formation with no constraint on the electronic character of the migrating arene ring. The photoreaction can be combined in one operation to achieve a formal arylation of the inert aniline C-N bond.

5.
J Am Chem Soc ; 145(35): 19225-19231, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37606549

RESUMO

Proton-exchange membrane fuel cells enable the portable utilization of hydrogen (H2) as an energy resource. Current electrolytic materials have limitation, and there is an urgent need to develop new materials showing especially high proton conductivity. Here, we report the ultra-fast proton conduction in a novel metal-organic framework, MFM-808, which adopts an unprecedented topology and a unique structure consisting of two-dimensional layers of {Zr6}-clusters. By replacing the bridging formate with sulfate ligands within {Zr6}-layers, the modified MFM-808-SO4 exhibits an exceptional proton conductivity of 0.21 S·cm-1 at 85 °C and 99% relative humidity. Modeling by molecular dynamics confirms that proton transfer is promoted by an efficient two-dimensional conducting network assembled by sulfate-{Zr6}-layers. MFM-808-SO4 also possesses excellent photocatalytic activity for water splitting to produce H2, paving a new pathway to achieve a renewable hydrogen-energy cycle.

6.
Chemistry ; 29(71): e202302497, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37733973

RESUMO

Multinuclear, self-assembled lanthanide complexes present clear opportunities as sensors and imaging agents. Despite the widely acknowledged potential of this class of supramolecule, synthetic and characterization challenges continue to limit systematic studies into their self-assembly restricting the number and variety of lanthanide architectures reported relative to their transition metal counterparts. Here we present the first study evaluating the effect of ligand backbone symmetry on multinuclear lanthanide complex self-assembly. Replacement of a symmetric ethylene linker with an unsymmetric amide at the center of a homoditopic ligand governs formation of an unusual Ln6 L6 complex with coordinatively unsaturated metal centers. The choice of triflate as a counterion, and the effect of ionic radii are shown to be critical for formation of the Ln6 L6 complex. The atypical Ln6 L6 architecture is characterized using a combination of mass spectrometry, luminescence, DOSY NMR and EPR spectroscopy measurements. Luminescence experiments support clear differences between comparable Eu6 L6 and Eu2 L3 complexes, with relatively short luminescent lifetimes and low quantum yields observed for the Eu6 L6 structure indicative of non-radiative decay processes. Synthesis of the Gd6 L6 analogue allows three distinct Gd⋯Gd distance measurements to be extracted using homo-RIDME EPR experiments.

8.
Langmuir ; 38(8): 2576-2589, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35166554

RESUMO

In the United Kingdom, decommissioning of legacy spent fuel storage facilities involves the retrieval of radioactive sludges that have formed as a result of corrosion of Magnox nuclear fuel. Retrieval of sludges may re-suspend a colloidal fraction of the sludge, thereby potentially enhancing the mobility of radionuclides including uranium. The colloidal properties of the layered double hydroxide (LDH) phase hydrotalcite, a key product of Magnox fuel corrosion, and its interactions with U(VI) are of interest. This is because colloidal hydrotalcite is a potential transport vector for U(VI) under the neutral-to-alkaline conditions characteristic of the legacy storage facilities and other nuclear decommissioning scenarios. Here, a multi-technique approach was used to investigate the colloidal stability of hydrotalcite and the U(VI) sorption mechanism(s) across pH 7-11.5 and with variable U(VI) surface loadings (0.01-1 wt %). Overall, hydrotalcite was found to form stable colloidal suspensions between pH 7 and 11.5, with some evidence for Mg2+ leaching from hydrotalcite colloids at pH ≤ 9. For systems with U present, >98% of U(VI) was removed from the solution in the presence of hydrotalcite, regardless of pH and U loading, although the sorption mode was affected by both pH and U concentrations. Under alkaline conditions, U(VI) surface precipitates formed on the colloidal hydrotalcite nanoparticle surface. Under more circumneutral conditions, Mg2+ leaching from hydrotalcite and more facile exchange of interlayer carbonate with the surrounding solution led to the formation of uranyl carbonate species (e.g., Mg(UO2(CO3)3)2-(aq)). Both X-ray absorption spectroscopy (XAS) and luminescence analysis confirmed that these negatively charged species sorbed as both outer- and inner-sphere tertiary complexes on the hydrotalcite surface. These results demonstrate that hydrotalcite can form pseudo-colloids with U(VI) under a wide range of pH conditions and have clear implications for understanding the uranium behavior in environments where hydrotalcite and other LDHs may be present.

9.
Angew Chem Int Ed Engl ; 61(45): e202207947, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36222278

RESUMO

Dipolar coupled multi-spin systems have the potential to be used as molecular qubits. Herein we report the synthesis of a molecular multi-qubit model system with three individually addressable, weakly interacting, spin 1 / 2 ${{ 1/2 }}$ centres of differing g-values. We use pulsed Electron Paramagnetic Resonance (EPR) techniques to characterise and separately address the individual electron spin qubits; CuII , Cr7 Ni ring and a nitroxide, to determine the strength of the inter-qubit dipolar interaction. Orientation selective Relaxation-Induced Dipolar Modulation Enhancement (os-RIDME) detecting across the CuII spectrum revealed a strongly correlated CuII -Cr7 Ni ring relationship; detecting on the nitroxide resonance measured both the nitroxide and CuII or nitroxide and Cr7 Ni ring correlations, with switchability of the interaction based on differing relaxation dynamics, indicating a handle for implementing EPR-based quantum information processing (QIP) algorithms.


Assuntos
Elétrons , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Modelos Moleculares , Conformação Molecular
10.
J Am Chem Soc ; 143(33): 13184-13194, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34387466

RESUMO

Pentavalent uranyl species are crucial intermediates in transformations that play a key role for the nuclear industry and have recently been demonstrated to persist in reducing biotic and abiotic aqueous environments. However, due to the inherent instability of pentavalent uranyl, little is known about its electronic structure. Herein, we report the synthesis and characterization of a series of monomeric and dimeric, pentavalent uranyl amide complexes. These synthetic efforts enable the acquisition of emission spectra of well-defined pentavalent uranyl complexes using photoluminescence techniques, which establish a unique signature to characterize its electronic structure and, potentially, its role in biological and engineered environments via emission spectroscopy.

11.
Magn Reson Chem ; 59(12): 1244-1252, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34405451

RESUMO

Pure shift nuclear magnetic resonance (NMR) methods suppress the effect of homonuclear scalar couplings to produce NMR spectra consisting solely of a single signal for each chemically distinct site. They are increasingly relied upon for analysis of complex molecules and mixtures as they overcome the extensive signal overlap that complicates proton NMR spectra of all but the simplest species. Current broadband pure shift methodologies for 1D proton spectra suffer from reduced sensitivity compared with their conventional counterparts and typically require a large amount of instrument time for low concentration samples. In this study, we demonstrate how the sensitivity limitation may be overcome by transiently increasing the bulk polarization using signal amplification by reversible exchange (SABRE) hyperpolarization. We utilize para-enriched dihydrogen to enhance the pure shift NMR resonances of pyridine by up to a factor of 60 in a single-scan experiment and extend this to propose a method to unambiguously determine mixture components based on the enhancement of their pure shift NMR signals.


Assuntos
Hidrogênio , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Prótons
12.
Chemistry ; 26(65): 14817-14822, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32476171

RESUMO

Upconverting phosphors (UCPs) convert multiple low energy photons into higher energy emission via the process of photon upconversion and offer an attractive alternative to organic fluorophores for use as luminescent probes. Here, UCPs were capped with functionalized silica in order to provide a surface to covalently conjugate proteins with surface-accessible cysteines. Variants of green fluorescent protein (GFP) and the flavoenzyme pentaerythritol tetranitrate reductase (PETNR) were then attached via maleimide-thiol coupling in order to allow energy transfer from the UCP to the GFP or flavin cofactor of PETNR, respectively. PETNR retains its activity when coupled to the UCPs, which allows reversible detection of enzyme substrates via ratiometric sensing of the enzyme redox state.


Assuntos
Fótons , Transferência de Energia , Ativação Enzimática , Corantes Fluorescentes , Luminescência , Oxirredução , Especificidade por Substrato
13.
Environ Sci Technol ; 54(4): 2268-2276, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31934763

RESUMO

As the dominant radionuclide by mass in many radioactive wastes, the control of uranium mobility in contaminated environments is of high concern. U speciation can be governed by microbial interactions, whereby metal-reducing bacteria are able to reduce soluble U(VI) to insoluble U(IV), providing a method for removal of U from contaminated groundwater. Although microbial U(VI) reduction is widely reported, the mechanism(s) for the transformation of U(VI) to relatively insoluble U(IV) phases are poorly understood. By combining a suite of analyses, including luminescence, U M4-edge high-energy resolved fluorescence detection-X-ray absorption near-edge structure (XANES), and U L3-edge XANES/extended X-ray absorption fine structure, we show that the microbial reduction of U(VI) by the model Fe(III)-reducing bacterium, Shewanella oneidensis MR1, proceeds via a single electron transfer to form a pentavalent U(V) intermediate which disproportionates to form U(VI) and U(IV). Furthermore, we have identified significant U(V) present in post reduction solid phases, implying that U(V) may be stabilized for up to 120.5 h.


Assuntos
Shewanella , Urânio , Biodegradação Ambiental , Compostos Férricos , Oxirredução
14.
Inorg Chem ; 58(10): 6904-6917, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31025862

RESUMO

The coordination chemistry of plutonium(IV) and plutonium(VI) with the complexing agents tetraphenyl and tetra-isopropyl imidodiphosphinate (TPIP- and TIPIP-) is reported. Treatment of sodium tetraphenylimidodiphosphinate (NaTPIP) and its related counterpart with peripheral isopropyl groups (NaTIPIP) with [NBu4]2[PuIV(NO3)6] yields the respective PuIV complexes [Pu(TPIP)3(NO3)] and [Pu(TIPIP)2(NO3)2] + [PuIV(TIPIP)3(NO3)]. Similarly, the reactions of NaTPIP and NaTIPIP with a Pu(VI) nitrate solution lead to the formation of [PuO2(HTIPIP)2(H2O)][NO3]2, which incorporates a protonated bidentate TIPIP- ligand, and [PuO2(TPIP)(HTPIP)(NO3)], where the protonated HTPIP ligand is bound in a monodentate fashion. Finally, a mixed U(VI)/Pu(VI) compound, [(UO2/PuO2)(TPIP)(HTPIP)(NO3)], is reported. All these actinyl complexes remain in the +VI oxidation state in solution over several weeks. The resultant complexes have been characterized using a combination of X-ray structural studies, NMR, optical, vibrational spectroscopies, and electrospray ionization mass spectrometry. The influence of the R-group (R = phenyl or iPr) on the nature of the complex is discussed with the help of DFT studies.

15.
Inorg Chem ; 57(11): 6571-6583, 2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29775053

RESUMO

We report the preparation of a range of alkali metal uranyl(VI) tri- bis(silyl)amide complexes [{M(THF) x}{(µ-O)U(O)(N″)3}] (1M) (N″ = {N(SiMe3)2}-, M = Li, Na, x = 2; M = K, x = 3; M = K, Rb, Cs, x = 0) containing electrostatic alkali metal uranyl-oxo interactions. Reaction of 1M with 2,2,2-cryptand or 2 equiv of the appropriate crown ether resulted in the isolation of the separated ion pair species [U(O)2(N″)3][M(2,2,2-cryptand)] (3M, M = Li-Cs) and [U(O)2(N″)3][M(crown)2] (4M, M = Li, crown = 12-crown-4 ether; M = Na-Cs, crown = 15-crown-5 ether). A combination of crystallographic studies and IR, Raman and UV-vis spectroscopies has revealed that the 1M series adopts contact ion pair motifs in the solid state where the alkali metal caps one of the uranyl-oxo groups. Upon dissolution in THF solution, this contact is lost, and instead, separated ion pair motifs are observed, which is confirmed by the isolation of [U(O)2(N″)3][M(THF) n] (2M) (M = Li, n = 4; M = Na, K, n = 6). The compounds have been characterized by single crystal X-ray diffraction, multinuclear NMR spectroscopy, IR, Raman, and UV-vis spectroscopies, and elemental analyses.

16.
Phys Chem Chem Phys ; 20(25): 16949-16955, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29873653

RESUMO

LOV-domains are ubiquitous photosensory proteins that are commonly re-engineered to serve as powerful and versatile fluorescent proteins and optogenetic tools. The photoactive, flavin chromophore, however, is excited using short wavelengths of light in the blue and UV regions, which have limited penetration into biological samples and can cause photodamage. Here, we have used non-linear spectroscopy and microscopy of the fluorescent protein, iLOV, to reveal that functional variants of LOV can be activated to great effect by two non-resonant photons of lower energy, near infrared light, not only in solution but also in biological samples. The two photon cross section of iLOV has a significantly blue-shifted S0 → S1 transition compared with the one photon absorption spectrum, suggesting preferential population of excited vibronic states. It is highly likely, therefore, that the two photon absorption wavelength of engineered, LOV-based tools is tuneable. We also demonstrate for the first time two photon imaging using iLOV in human epithelial kidney cells. Consequently, two photon absorption by engineered, flavin-based bio-molecular tools can enable non-invasive activation with high depth resolution and the potential for not only improved image clarity but also enhanced spatiotemporal control for optogenetic applications.


Assuntos
Flavoproteínas/química , Corantes Fluorescentes/química , Proteínas Luminescentes/química , Imagem Óptica/métodos , Escherichia coli , Flavinas/química , Flavoproteínas/genética , Células HEK293 , Humanos , Raios Infravermelhos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Fótons , Conformação Proteica , Espectrometria de Fluorescência/métodos
17.
Angew Chem Int Ed Engl ; 57(31): 9921-9924, 2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-29898241

RESUMO

The release of uranyl(VI) is a hazardous environmental issue, with limited ways to monitor accumulation in situ. Here, we present a method for the detection of uranyl(VI) ions through the utilization of a unique fluorescence energy transfer process to europium(III). Our system displays the first example of a "turn-on" europium(III) emission process with a small, water-soluble lanthanide complex triggered by uranyl(VI) ions.

18.
Inorg Chem ; 56(10): 5959-5970, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28459590

RESUMO

In recent work we have reported the synthesis and physical properties of near-linear Ln(II) (Ln = lanthanide) complexes utilizing the bulky bis(silylamide) {N(SiiPr3)2}. Herein, we synthesize trigonal-planar Ln(II) complexes by employing a smaller bis(silylamide), {N(SitBuMe2)2} (N**), to study the effects of this relatively rare Ln geometry/oxidation state combination on the magnetic and optical properties of complexes. We show that the charge-separated trigonal-planar Ln(II) complexes [K(2.2.2-cryptand)][Ln(N**)3] (Ln = Sm (1), Eu (2), Tm (3), Yb (4)) can be prepared by the reaction of 1.5 equiv of [{K(N**)}2] with LnI2THF2 (Ln = Sm, Yb) or LnI2 (Ln = Eu, Tm) and 1 equiv of 2.2.2-cryptand in Et2O. Complex 3 is the first structurally characterized trigonal-planar Tm(II) complex. In the absence of 2.2.2-cryptand, [K(DME)3][Sm(N**)3] (5) and [Ln(N**)2(µ-N**)K(toluene)2] (Ln = Sm (6), Eu (7)) were isolated in the presence of DME (dimethoxyethane) or toluene, respectively. The 1:1 reaction of [{K(N**)}2] with LnI2THF2 (Ln = Sm, Yb) in THF gave the four-coordinate pseudo-tetrahedral Lewis base adducts [Ln(N**)2(THF)2] (Ln = Sm (8), Yb (9)) and the cyclometalated complex [Yb(N**){N(SitBuMe2)(SitBuMeCH2)}(THF)] (10). Complexes 1-10 have been characterized as appropriate by single-crystal XRD, magnetic measurements, multinuclear NMR, EPR, and electronic spectroscopy, together with CASSCF-SO and DFT calculations. The physical properties of 1-4 are compared and contrasted with those of closely related near-linear Ln(II) bis(silylamide) complexes.

19.
Chem Sci ; 15(18): 6965-6978, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38725516

RESUMO

The aqueous uranyl dication has long been known to facilitate the UV light-induced decomposition of aqueous VOCs (volatile organic compounds), via the long-lived highly efficient, uranyl excited state. The lower-energy visible light excited uranyl ion is also able to cleave unactivated hydrocarbon C-H bonds, yet the development of this reactivity into controlled and catalytic C-H bond functionalization is still in its infancy, with almost all studies still focused on uranyl nitrate as the precatalyst. Here, hydrocarbon-soluble uranyl nitrate and chloride complexes supported by substituted phenanthroline (Ph2phen) ligands are compared to each other, and to the parent salts, as photocatalysts for the functionalization of cyclooctane by H atom abstraction. Analysis of the absorption and emission spectra, and emission lifetimes of Ph2phen-coordinated uranyl complexes demonstrate the utility of the ligand in light absorption in the photocatalysis, which is related to the energy and kinetic decay profile of the uranyl photoexcited state. Density functional theory computational analysis of the C-H activation steps in the reaction show how a set of dispersion forces between the hydrocarbon substrate and the Ph2phen ligand provide control over the H atom abstraction, and provide predictions of selectivity of H atom abstraction by the uranyl oxo of the ring C-H over the ethyl C-H in an ethylcyclohexane substrate.

20.
Inorg Chem ; 52(7): 3429-44, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23438021

RESUMO

Lanthanide(III) complexes with N-donor extractants, which exhibit the potential for the separation of minor actinides from lanthanides in the management of spent nuclear fuel, have been directly synthesized and characterized in both solution and solid states. Crystal structures of the Pr(3+), Eu(3+), Tb(3+), and Yb(3+) complexes of 2,9-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)-1,10-phenanthroline (CyMe4-BTPhen) and the Pr(3+), Eu(3+), and Tb(3+) complexes of 6,6'-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)-2,2'-bypyridine (CyMe4-BTBP) were obtained. The majority of these structures displayed coordination of two of the tetra-N-donor ligands to each Ln(3+) ion, even when in some cases the complexations were performed with equimolar amounts of lanthanide and N-donor ligand. The structures showed that generally the lighter lanthanides had their coordination spheres completed by a bidentate nitrate ion, giving a 2+ charged complex cation, whereas the structures of the heavier lanthanides displayed tricationic complex species with a single water molecule completing their coordination environments. Electronic absorption spectroscopic titrations showed formation of the 1:2 Ln(3+)/L(N4-donor) species (Ln = Pr(3+), Eu(3+), Tb(3+)) in methanol when the N-donor ligand was in excess. When the Ln(3+) ion was in excess, evidence for formation of a 1:1 Ln(3+)/L(N4-donor) complex species was observed. Luminescent lifetime studies of mixtures of Eu(3+) with excess CyMe4-BTBP and CyMe4-BTPhen in methanol indicated that the nitrate-coordinated species is dominant in solution. X-ray absorption spectra of Eu(3+) and Tb(3+) species, formed by extraction from an acidic aqueous phase into an organic solution consisting of excess N-donor extractant in pure cyclohexanone or 30% tri-n-butyl phosphate (TBP) in cyclohexanone, were obtained. The presence of TBP in the organic phase did not alter lanthanide speciation. Extended X-ray absorption fine structure data from these spectra were fitted using chemical models established by crystallography and solution spectroscopy and showed the dominant lanthanide species in the bulk organic phase was a 1:2 Ln(3+)/L(N-donor) species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA