Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Mol Cell ; 82(18): 3424-3437.e8, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36113412

RESUMO

Cells can respond to stalled ribosomes by sensing ribosome collisions and employing quality control pathways. How ribosome stalling is resolved without collisions, however, has remained elusive. Here, focusing on noncolliding stalling exhibited by decoding-defective ribosomes, we identified Fap1 as a stalling sensor triggering 18S nonfunctional rRNA decay via polyubiquitination of uS3. Ribosome profiling revealed an enrichment of Fap1 at the translation initiation site but also an association with elongating individual ribosomes. Cryo-EM structures of Fap1-bound ribosomes elucidated Fap1 probing the mRNA simultaneously at both the entry and exit channels suggesting an mRNA stasis sensing activity, and Fap1 sterically hinders the formation of canonical collided di-ribosomes. Our findings indicate that individual stalled ribosomes are the potential signal for ribosome dysfunction, leading to accelerated turnover of the ribosome itself.


Assuntos
Biossíntese de Proteínas , Ribossomos , Estabilidade de RNA , RNA Mensageiro/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Ribossomos/metabolismo
2.
Mol Cell ; 74(5): 909-921.e6, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31006538

RESUMO

Certain proteins and organelles can be selectively degraded by autophagy. Typical substrates and receptors of selective autophagy have LC3-interacting regions (LIRs) that bind to autophagosomal LC3 and GABARAP family proteins. Here, we performed a differential interactome screen using wild-type LC3B and a LIR recognition-deficient mutant and identified TEX264 as a receptor for autophagic degradation of the endoplasmic reticulum (ER-phagy). TEX264 is an ER protein with a single transmembrane domain and a LIR motif. TEX264 interacts with LC3 and GABARAP family proteins more efficiently and is expressed more ubiquitously than previously known ER-phagy receptors. ER-phagy is profoundly blocked by deletion of TEX264 alone and almost completely by additional deletion of FAM134B and CCPG1. A long intrinsically disordered region of TEX264 is required for its ER-phagy receptor function to bridge the gap between the ER and autophagosomal membranes independently of its amino acid sequence. These results suggest that TEX264 is a major ER-phagy receptor.


Assuntos
Proteínas Relacionadas à Autofagia/genética , Autofagia/genética , Retículo Endoplasmático/genética , Proteínas Intrinsicamente Desordenadas/genética , Sequência de Aminoácidos/genética , Proteínas Relacionadas à Autofagia/química , Proteínas de Ciclo Celular/genética , Retículo Endoplasmático/química , Estresse do Retículo Endoplasmático/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Intrinsicamente Desordenadas/química , Proteínas de Membrana , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Neoplasias/genética , Proteólise
3.
Proc Natl Acad Sci U S A ; 120(32): e2206860120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523546

RESUMO

Mbtd1 (mbt domain containing 1) encodes a nuclear protein containing a zinc finger domain and four malignant brain tumor (MBT) repeats. We previously generated Mbtd1-deficient mice and found that MBTD1 is highly expressed in fetal hematopoietic stem cells (HSCs) and sustains the number and function of fetal HSCs. However, since Mbtd1-deficient mice die soon after birth possibly due to skeletal abnormalities, its role in adult hematopoiesis remains unclear. To address this issue, we generated Mbtd1 conditional knockout mice and analyzed adult hematopoietic tissues deficient in Mbtd1. We observed that the numbers of HSCs and progenitors increased and Mbtd1-deficient HSCs exhibited hyperactive cell cycle, resulting in a defective response to exogenous stresses. Mechanistically, we found that MBTD1 directly binds to the promoter region of FoxO3a, encoding a forkhead protein essential for HSC quiescence, and interacts with components of TIP60 chromatin remodeling complex and other proteins involved in HSC and other stem cell functions. Restoration of FOXO3a activity in Mbtd1-deficient HSCs in vivo rescued cell cycle and pool size abnormalities. These findings indicate that MBTD1 is a critical regulator for HSC pool size and function, mainly through the maintenance of cell cycle quiescence by FOXO3a.


Assuntos
Medula Óssea , Células-Tronco Hematopoéticas , Animais , Camundongos , Ciclo Celular/genética , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição/metabolismo
4.
EMBO J ; 40(15): e107976, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34184765

RESUMO

Nuclear stress bodies (nSBs) are nuclear membraneless organelles formed around stress-inducible HSATIII architectural long noncoding RNAs (lncRNAs). nSBs repress splicing of hundreds of introns during thermal stress recovery, which are partly regulated by CLK1 kinase phosphorylation of temperature-dependent Ser/Arg-rich splicing factors (SRSFs). Here, we report a distinct mechanism for this splicing repression through protein sequestration by nSBs. Comprehensive identification of RNA-binding proteins revealed HSATIII association with proteins related to N6 -methyladenosine (m6 A) RNA modification. 11% of the first adenosine in the repetitive HSATIII sequence were m6 A-modified. nSBs sequester the m6 A writer complex to methylate HSATIII, leading to subsequent sequestration of the nuclear m6 A reader, YTHDC1. Sequestration of these factors from the nucleoplasm represses m6 A modification of pre-mRNAs, leading to repression of m6 A-dependent splicing during stress recovery phase. Thus, nSBs serve as a common platform for regulation of temperature-dependent splicing through dual mechanisms employing two distinct ribonucleoprotein modules with partially m6 A-modified architectural lncRNAs.


Assuntos
Proteínas do Tecido Nervoso/genética , Fatores de Processamento de RNA/genética , Splicing de RNA , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Núcleo Celular/genética , Células HeLa , Humanos , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sequências Repetitivas de Ácido Nucleico , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Temperatura
5.
J Virol ; 98(7): e0074724, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38819171

RESUMO

Although the herpes simplex virus type 1 (HSV-1) genome was thought to contain approximately 80 different protein coding sequences (CDSs), recent multi-omics analyses reported HSV-1 encodes more than 200 potential CDSs. However, few of the newly identified CDSs were confirmed to be expressed at the peptide or protein level in HSV-1-infected cells. Furthermore, the impact of the proteins they encode on HSV-1 infection is largely unknown. This study focused on a newly identified CDS, UL31.6. Re-analyzation of our previous chemical proteomics data verified that UL31.6 was expressed at the peptide level in HSV-1-infected cells. Antisera raised against a viral protein encoded by UL31.6 (pUL31.6) reacted with a protein with an approximate molecular mass of 37 kDa in lysates of Vero cells infected with each of three HSV-1 strains. pUL31.6 was efficiently dissociated from virions in high-salt solution. A UL31.6-null mutation had a minimal effect on HSV-1 gene expression, replication, cell-to-cell spread, and morphogenesis in Vero cells; in contrast, it significantly reduced HSV-1 cell-to-cell spread in three neural cells but not in four non-neural cells including Vero cells. The UL31.6-null mutation also significantly reduced the mortality and viral replication in the brains of mice after intracranial infection, but had minimal effects on pathogenic manifestations in and around the eyes, and viral replication detected in the tear films of mice after ocular infection. These results indicated that pUL31.6 was a tegument protein and specifically acted as a neurovirulence factor by potentially promoting viral transmission between neuronal cells in the central nervous system.IMPORTANCERecent multi-omics analyses reported the herpes simplex virus type 1 (HSV-1) genome encodes an additional number of potential coding sequences (CDSs). However, the expressions of these CDSs at the peptide or protein levels and the biological effects of these CDSs on HSV-1 infection remain largely unknown. This study annotated a cryptic orphan CDS, termed UL31.6, an HSV-1 gene that encodes a tegument protein with an approximate molecular mass of 37 kDa, which specifically acts as a neurovirulence factor. Our study indicates that HSV-1 proteins important for viral pathogenesis remain to be identified and a comprehensive understanding of the pathogenesis of HSV-1 will require not only the identification of cryptic orphan CDSs using emerging technologies but also step-by-step and in-depth analyses of each of the cryptic orphan CDSs.


Assuntos
Herpesvirus Humano 1 , Proteínas Virais , Replicação Viral , Animais , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/patogenicidade , Herpesvirus Humano 1/fisiologia , Chlorocebus aethiops , Células Vero , Camundongos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Herpes Simples/virologia , Virulência , Feminino , Humanos
6.
EMBO J ; 39(3): e102729, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31782550

RESUMO

A number of long noncoding RNAs (lncRNAs) are induced in response to specific stresses to construct membrane-less nuclear bodies; however, their function remains poorly understood. Here, we report the role of nuclear stress bodies (nSBs) formed on highly repetitive satellite III (HSATIII) lncRNAs derived from primate-specific satellite III repeats upon thermal stress exposure. A transcriptomic analysis revealed that depletion of HSATIII lncRNAs, resulting in elimination of nSBs, promoted splicing of 533 retained introns during thermal stress recovery. A HSATIII-Comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS) analysis identified multiple splicing factors in nSBs, including serine and arginine-rich pre-mRNA splicing factors (SRSFs), the phosphorylation states of which affect splicing patterns. SRSFs are rapidly de-phosphorylated upon thermal stress exposure. During stress recovery, CDC like kinase 1 (CLK1) was recruited to nSBs and accelerated the re-phosphorylation of SRSF9, thereby promoting target intron retention. Our findings suggest that HSATIII-dependent nSBs serve as a conditional platform for phosphorylation of SRSFs by CLK1 to promote the rapid adaptation of gene expression through intron retention following thermal stress exposure.


Assuntos
Núcleo Celular/metabolismo , Resposta ao Choque Térmico , Repetições de Microssatélites , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , RNA Longo não Codificante/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo , Animais , Células CHO , Cricetulus , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células HeLa , Humanos , Íntrons , Fosforilação , Fatores de Processamento de RNA/metabolismo , Sequenciamento do Exoma
7.
Cell ; 137(5): 914-25, 2009 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-19490896

RESUMO

The 26S proteasome is an enzymatic complex that degrades ubiquitinated proteins in eukaryotic cells. It is composed of the 20S core particle (CP) and the 19S regulatory particle (RP). The latter is further divided into the lid and base subcomplexes. While the mechanism involved in the assembly of the CP is well investigated, that of the RP is poorly understood. Here, we show that the formation of the mammalian base subcomplex involves three distinct modules, where specific pairs of ATPase subunits are associated with the distinct chaperones p28, S5b, or p27. The process of base formation starts from association of the p28-Rpt3-Rpt6-Rpn14 complex with the S5b-Rpt1-Rpt2-Rpn1 complex, followed by incorporation of the p27-Rpt5-Rpt4 complex and Rpn2, where p28, S5b, and p27 regulate the associations between the modules. These chaperones dissociate before completion of 26S proteasome formation. Our results demonstrate that base assembly is facilitated by multiple proteasome-dedicated chaperones, like CP assembly.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Linhagem Celular , Técnicas de Silenciamento de Genes , Humanos , Chaperonas Moleculares/metabolismo
8.
EMBO J ; 38(17): e102870, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31368590

RESUMO

The PIWI-interacting RNA (piRNA) pathway preserves genomic integrity by repressing transposable elements (TEs) in animal germ cells. Among PIWI-clade proteins in Drosophila, Piwi transcriptionally silences its targets through interactions with cofactors, including Panoramix (Panx) and forms heterochromatin characterized by H3K9me3 and H1. Here, we identified Nxf2, a nuclear RNA export factor (NXF) variant, as a protein that forms complexes with Piwi, Panx, and p15. Panx-Nxf2-P15 complex formation is necessary in the silencing by stabilizing protein levels of Nxf2 and Panx. Notably, ectopic targeting of Nxf2 initiates co-transcriptional repression of the target reporter in a manner independent of H3K9me3 marks or H1. However, continuous silencing requires HP1a and H1. In addition, Nxf2 directly interacts with target TE transcripts in a Piwi-dependent manner. These findings suggest a model in which the Panx-Nxf2-P15 complex enforces the association of Piwi with target transcripts to trigger co-transcriptional repression, prior to heterochromatin formation in the nuclear piRNA pathway. Our results provide an unexpected connection between an NXF variant and small RNA-mediated co-transcriptional silencing.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Inativação Gênica , RNA Interferente Pequeno/metabolismo , Animais , Proteínas Argonautas/metabolismo , Feminino , Regulação da Expressão Gênica , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica
9.
J Virol ; 96(10): e0030622, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35475666

RESUMO

This study developed a system consisting of two rounds of screening cellular proteins involved in the nuclear egress of herpes simplex virus 1 (HSV-1). Using this system, we first screened cellular proteins that interacted with the HSV-1 nuclear egress complex (NEC) consisting of UL34 and UL31 in HSV-1-infected cells, which are critical for the nuclear egress of HSV-1, by tandem affinity purification coupled with mass spectrometry-based proteomics technology. Next, we performed CRISPR/Cas9-based screening of live HSV-1-infected reporter cells under fluorescence microscopy using single guide RNAs targeting the cellular proteins identified in the first proteomic screening to detect the mislocalization of the lamin-associated protein emerin, which is a phenotype for defects in HSV-1 nuclear egress. This study focused on a cellular orphan transporter SLC35E1, one of the cellular proteins identified by the screening system. Knockout of SLC35E1 reduced HSV-1 replication and induced membranous invaginations containing perinuclear enveloped virions (PEVs) adjacent to the nuclear membrane (NM), aberrant accumulation of PEVs in the perinuclear space between the inner and outer NMs and the invagination structures, and mislocalization of the NEC. These effects were similar to those of previously reported mutation(s) in HSV-1 proteins and depletion of cellular proteins that are important for HSV-1 de-envelopment, one of the steps required for HSV-1 nuclear egress. Our newly established screening system enabled us to identify a novel cellular protein required for efficient HSV-1 de-envelopment. IMPORTANCE The identification of cellular protein(s) that interact with viral effector proteins and function in important viral procedures is necessary for enhancing our understanding of the mechanics of various viral processes. In this study, we established a new system consisting of interactome screening for the herpes simplex virus 1 (HSV-1) nuclear egress complex (NEC), followed by loss-of-function screening to target the identified putative NEC-interacting cellular proteins to detect a defect in HSV-1 nuclear egress. This newly established system identified SLC35E1, an orphan transporter, as a novel cellular protein required for efficient HSV-1 de-envelopment, providing an insight into the mechanisms involved in this viral procedure.


Assuntos
Herpesvirus Humano 1 , Proteínas de Membrana Transportadoras , Liberação de Vírus , Animais , Sistemas CRISPR-Cas , Chlorocebus aethiops , Técnicas de Inativação de Genes , Células HEK293 , Células HeLa , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiologia , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares , Proteômica , Células Vero , Proteínas Virais/metabolismo
10.
J Immunol ; 206(1): 154-163, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33219146

RESUMO

Viral RNA in the cytoplasm of mammalian host cells is recognized by retinoic acid-inducible protein-I-like receptors (RLRs), which localize to cytoplasmic stress granules (SGs). Activated RLRs associate with the mitochondrial adaptor protein IPS-1, which activates antiviral host defense mechanisms, including type I IFN induction. It has remained unclear, however, how RLRs in SGs and IPS-1 in the mitochondrial outer membrane associate physically and engage in information transfer. In this study, we show that NUDT21, an RNA-binding protein that regulates alternative transcript polyadenylation, physically associates with IPS-1 and mediates its localization to SGs in response to transfection with polyinosinic-polycytidylic acid [poly(I:C)], a mimic of viral dsRNA. We found that despite its well-established function in the nucleus, a fraction of NUDT21 localizes to mitochondria in resting cells and becomes localized to SGs in response to poly(I:C) transfection. NUDT21 was also found to be required for efficient type I IFN induction in response to viral infection in both human HeLa cells and mouse macrophage cell line RAW264.7 cells. Our results together indicate that NUDT21 links RLRs in SGs to mitochondrial IPS-1 and thereby activates host defense responses to viral infection.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Infecções por Cardiovirus/metabolismo , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Proteína DEAD-box 58/metabolismo , Vírus da Encefalomiocardite/fisiologia , Mitocôndrias/metabolismo , Doença de Newcastle/metabolismo , Vírus da Doença de Newcastle/fisiologia , Receptores Imunológicos/metabolismo , Vesículas Secretórias/metabolismo , Animais , Fator de Especificidade de Clivagem e Poliadenilação/genética , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Camundongos , Poli I-C/imunologia , Transporte Proteico , Células RAW 264.7 , RNA Interferente Pequeno/genética , RNA Viral/imunologia , Estresse Fisiológico
11.
Am J Transplant ; 22(3): 731-744, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34932270

RESUMO

Unlimited organ availability would represent a paradigm shift in transplantation. Long-term in vivo engraftment and function of scaled-up bioengineered liver grafts have not been previously reported. In this study, we describe a human-scale transplantable liver graft engineered on a porcine liver-derived scaffold. We repopulated the scaffold parenchyma with primary hepatocytes and the vascular system with endothelial cells. For in vivo functional testing, we performed auxiliary transplantation of the repopulated scaffold in pigs with induced liver failure. It was observed that the auxiliary bioengineered liver graft improved liver function for 28 days and exhibited upregulation of liver-specific genes. This study is the first of its kind to present 28 days of posttransplant evaluation of a bioengineered liver graft using a preclinical large animal model. Furthermore, it provides definitive evidence for the feasibility of engineering human-scale transplantable liver grafts for clinical applications.


Assuntos
Falência Hepática , Transplante de Fígado , Animais , Células Endoteliais , Hepatócitos/transplante , Fígado/irrigação sanguínea , Suínos , Engenharia Tecidual , Alicerces Teciduais
12.
Proc Natl Acad Sci U S A ; 116(47): 23653-23661, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31694883

RESUMO

The activation of innate immune receptors by pathogen-associated molecular patterns (PAMPs) is central to host defense against infections. On the other hand, these receptors are also activated by immunogenic damage-associated molecular patterns (DAMPs), typically released from dying cells, and the activation can evoke chronic inflammatory or autoimmune disorders. One of the best known receptors involved in the immune pathogenesis is Toll-like receptor 7 (TLR7), which recognizes RNA with single-stranded structure. However, the causative DAMP RNA(s) in the pathogenesis has yet to be identified. Here, we first developed a chemical compound, termed KN69, that suppresses autoimmunity in several established mouse models. A subsequent search for KN69-binding partners led to the identification of U11 small nuclear RNA (U11snRNA) as a candidate DAMP RNA involved in TLR7-induced autoimmunity. We then showed that U11snRNA robustly activated the TLR7 pathway in vitro and induced arthritis disease in vivo. We also found a correlation between high serum level of U11snRNA and autoimmune diseases in human subjects and established mouse models. Finally, by revealing the structural basis for U11snRNA's ability to activate TLR7, we developed more potent TLR7 agonists and TLR7 antagonists, which may offer new therapeutic approaches for autoimmunity or other immune-driven diseases. Thus, our study has revealed a hitherto unknown immune function of U11snRNA, providing insight into TLR7-mediated autoimmunity and its potential for further therapeutic applications.


Assuntos
Glicoproteínas de Membrana/agonistas , RNA Nuclear Pequeno/imunologia , Receptor 7 Toll-Like/agonistas , Adulto , Alarminas/química , Animais , Artrite Reumatoide/sangue , Artrite Reumatoide/imunologia , Doenças Autoimunes/sangue , Doenças Autoimunes/imunologia , Sequência de Bases , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Imunossupressores/síntese química , Imunossupressores/farmacologia , Lúpus Eritematoso Sistêmico/sangue , Lúpus Eritematoso Sistêmico/imunologia , Glicoproteínas de Membrana/deficiência , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Pessoa de Meia-Idade , RNA/imunologia , RNA/metabolismo , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/imunologia , Análise de Sequência de RNA , Receptor 7 Toll-Like/deficiência , Adulto Jovem
13.
EMBO Rep ; 20(11): e48220, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31482640

RESUMO

Codon bias has been implicated as one of the major factors contributing to mRNA stability in several model organisms. However, the molecular mechanisms of codon bias on mRNA stability remain unclear in humans. Here, we show that human cells possess a mechanism to modulate RNA stability through a unique codon bias. Bioinformatics analysis showed that codons could be clustered into two distinct groups-codons with G or C at the third base position (GC3) and codons with either A or T at the third base position (AT3): the former stabilizing while the latter destabilizing mRNA. Quantification of codon bias showed that increased GC3-content entails proportionately higher GC-content. Through bioinformatics, ribosome profiling, and in vitro analysis, we show that decoupling the effects of codon bias reveals two modes of mRNA regulation, one GC3- and one GC-content dependent. Employing an immunoprecipitation-based strategy, we identify ILF2 and ILF3 as RNA-binding proteins that differentially regulate global mRNA abundances based on codon bias. Our results demonstrate that codon bias is a two-pronged system that governs mRNA abundance.


Assuntos
Uso do Códon , Códon , RNA Mensageiro/genética , Biologia Computacional/métodos , Guanilato Ciclase/genética , Humanos , Proteína do Fator Nuclear 45/metabolismo , Estabilidade de RNA , Ribossomos/genética , Ribossomos/metabolismo , Transcrição Gênica
14.
Proc Natl Acad Sci U S A ; 115(18): E4199-E4208, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29666234

RESUMO

Although mechanisms for protein homeostasis in the cytosol have been studied extensively, those in the nucleus remain largely unknown. Here, we identified that a protein complex mediates export of polyubiquitinated proteins from the nucleus to the cytosol. UBIN, a ubiquitin-associated (UBA) domain-containing protein, shuttled between the nucleus and the cytosol in a CRM1-dependent manner, despite the lack of intrinsic nuclear export signal (NES). Instead, the UBIN binding protein polyubiquitinated substrate transporter (POST) harboring an NES shuttled UBIN through nuclear pores. UBIN bound to polyubiquitin chain through its UBA domain, and the UBIN-POST complex exported them from the nucleus to the cytosol. Ubiquitinated proteins accumulated in the cytosol in response to proteasome inhibition, whereas cotreatment with CRM1 inhibitor led to their accumulation in the nucleus. Our results suggest that ubiquitinated proteins are exported from the nucleus to the cytosol in the UBIN-POST complex-dependent manner for the maintenance of nuclear protein homeostasis.


Assuntos
Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , Citosol/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Ubiquitinadas/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Proteínas de Transporte/genética , Núcleo Celular/genética , Células HEK293 , Células HeLa , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Proteínas de Membrana/genética , Camundongos , Células NIH 3T3 , Proteínas Nucleares/genética , Proteínas Carreadoras de Solutos , Proteínas Ubiquitinadas/genética
15.
Cancer Sci ; 111(2): 658-666, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31823471

RESUMO

Metabolic reprogramming, including the Warburg effect, is a hallmark of cancer. Indeed, the diversity of cancer metabolism leads to cancer heterogeneity, but accurate assessment of metabolic properties in tumors has not yet been undertaken. Here, we performed absolute quantification of the expression levels of 113 proteins related to carbohydrate metabolism and antioxidant pathways, in stage III colorectal cancer surgical specimens from 70 patients. The Warburg effect appeared in absolute protein levels between tumor and normal mucosa specimens demonstrated. Notably, the levels of proteins associated with the tricarboxylic citric acid cycle were remarkably reduced in the malignant tumors which had relapsed after surgery and treatment with 5-fluorouracil-based adjuvant therapy. In addition, the efficacy of 5-fluorouracil also decreased in the cultured cancer cell lines with promotion of the Warburg effect. We further identified nine and eight important proteins, which are closely related to the Warburg effect, for relapse risk and 5-fluorouracil benefit, respectively, using a biomarker exploration procedure. These results provide us a clue for bridging between metabolic protein expression profiles and benefit from 5-fluorouracil adjuvant chemotherapy.


Assuntos
Antioxidantes/metabolismo , Metabolismo dos Carboidratos , Neoplasias Colorretais/tratamento farmacológico , Fluoruracila/administração & dosagem , Adulto , Idoso , Quimioterapia Adjuvante , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Feminino , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento
16.
Genes Cells ; 24(8): 559-568, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31210371

RESUMO

Maintaining protein homeostasis is central to cell survival. The ubiquitin-proteasome system and autophagy play pivotal roles in protein quality control through protein degradation. Activities of these degradative pathways are carefully orchestrated, and autophagy is up-regulated during proteasome dysfunction for cellular homeostasis. However, the mechanism by which proteasome impairment induces compensatory autophagy has remained largely elusive. Here, we show that FAM48A mediates autophagy induction during proteasome inhibition. FAM48A is degraded by the proteasome and accumulates in cells by proteasome inhibition. Knockdown of FAM48A led to defective induction of autophagy during proteasome inhibition and accompanied by defective localization of Atg9 on recycling endosomes. Our results indicate that FAM48A is a kind of sensor that is required for compensatory autophagy induction upon proteasome impairment.


Assuntos
Autofagia , Complexo de Endopeptidases do Proteassoma/metabolismo , Fatores de Transcrição/genética , Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Humanos , Imuno-Histoquímica , Especificidade por Substrato , Fatores de Transcrição/metabolismo
17.
Nat Methods ; 14(3): 251-258, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28267743

RESUMO

Targeted proteomics approaches are of value for deep and accurate quantification of protein abundance. Extending such methods to quantify large numbers of proteins requires the construction of predefined targeted assays. We developed a targeted proteomics platform-in vitro proteome-assisted multiple reaction monitoring (MRM) for protein absolute quantification (iMPAQT)-by using >18,000 human recombinant proteins, thus enabling protein absolute quantification on a genome-wide scale. Our platform comprises experimentally confirmed MRM assays of mass tag (mTRAQ)-labeled peptides to allow for rapid and straightforward measurement of the absolute abundance of predefined sets of proteins by mass spectrometry. We applied iMPAQT to delineate the quantitative metabolic landscape of normal and transformed human fibroblasts. Oncogenic transformation gave rise to relatively small but global changes in metabolic pathways resulting in aerobic glycolysis (Warburg effect) and increased rates of macromolecule synthesis. iMPAQT should facilitate quantitative biology studies based on protein abundance measurements.


Assuntos
Genoma Humano/genética , Espectrometria de Massas/métodos , Proteoma/análise , Proteômica/métodos , Linhagem Celular Transformada , Fibroblastos/metabolismo , Glicólise/fisiologia , Humanos , Biblioteca de Peptídeos , Proteínas Recombinantes/análise
18.
Mol Cell ; 48(5): 692-704, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23102700

RESUMO

Reactive oxygen species (ROS)-induced activation of Apoptosis signal-regulating kinase 1 (ASK1) plays crucial roles in oxidative stress-mediated cell death through the activation of the JNK and p38 MAPK pathways. However, the regulatory mechanism of ASK1 in the oxidative stress response remains to be elucidated. Here, we identified the kelch repeat protein, Slim, as an activator of ASK1 through a Drosophila misexpression screen. We also performed a proteomics screen and revealed that Kelch domain containing 10 (KLHDC10), a mammalian ortholog of Slim, interacted with Protein phosphatase 5 (PP5), which has been shown to inactivate ASK1 in response to ROS. KLHDC10 bound to the phosphatase domain of PP5 and suppressed its phosphatase activity. Moreover, KLHDC10 was required for H(2)O(2)-induced sustained activation of ASK1 and cell death in Neuro2A cells. These findings suggest that Slim/KLHDC10 is an activator of ASK1, contributing to oxidative stress-induced cell death through the suppression of PP5.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Proteínas Nucleares/metabolismo , Estresse Oxidativo , Fosfoproteínas Fosfatases/metabolismo , Animais , Proteínas de Transporte/genética , Morte Celular , Linhagem Celular Tumoral , Clonagem Molecular , Proteínas de Drosophila/genética , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Ativação Enzimática , Regulação da Expressão Gênica , Células HEK293 , Humanos , Peróxido de Hidrogênio/farmacologia , MAP Quinase Quinase Quinase 5/genética , MAP Quinase Quinase Quinases/genética , Melaninas/metabolismo , Camundongos , Mutagênese Sítio-Dirigida , Proteínas Nucleares/genética , Oxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Fosfoproteínas Fosfatases/genética , Mutação Puntual , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Proteômica , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Transfecção , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
Mol Cell ; 48(2): 182-94, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22940245

RESUMO

Transcription factor access to regulatory elements is prevented by the nucleosome. Heat shock factor 1 (HSF1) is a winged helix transcription factor that plays roles in control and stressed conditions by gaining access to target elements, but mechanisms of HSF1 access are not well known in mammalian cells. Here, we show the physical interaction between the wing motif of human HSF1 and replication protein A (RPA), which is involved in DNA metabolism. Depletion of RPA1 abolishes HSF1 access to the promoter of HSP70 in unstressed condition and delays its rapid activation in response to heat shock. The HSF1-RPA complex leads to preloading of RNA polymerase II and opens the chromatin structure by recruiting a histone chaperone, FACT. Furthermore, this interaction is required for melanoma cell proliferation. These results provide a mechanism of constitutive HSF1 access to nucleosomal DNA, which is important for both basal and inducible gene expression.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Proteínas de Grupo de Alta Mobilidade , Elementos Reguladores de Transcrição , Proteína de Replicação A/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição , Sequência de Aminoácidos , Sequência de Bases , Cromatina/genética , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Células HEK293 , Fatores de Transcrição de Choque Térmico , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Humanos , Dados de Sequência Molecular , Nucleossomos/genética , Regiões Promotoras Genéticas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/genética , RNA Polimerase II/metabolismo , Fatores de Transcrição/genética , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
20.
Int J Mol Sci ; 21(23)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297405

RESUMO

Transcripts of alpha-fetoprotein (Afp), H19, and insulin-like growth factor 2 (Igf2) genes are highly expressed in mouse fetal liver, but decrease drastically during maturation. While transcriptional regulation of these genes has been well studied, the post-transcriptional regulation of their developmental decrease is poorly understood. Here, we show that shortening of poly(A) tails and subsequent RNA decay are largely responsible for the postnatal decrease of Afp, H19, and Igf2 transcripts in mouse liver. IGF2 mRNA binding protein 1 (IMP1), which regulates stability and translation efficiency of target mRNAs, binds to these fetal liver transcripts. When IMP1 is exogenously expressed in mouse adult liver, fetal liver transcripts show higher expression and possess longer poly(A) tails, suggesting that IMP1 stabilizes them. IMP1 declines concomitantly with fetal liver transcripts as liver matures. Instead, RNA-binding proteins (RBPs) that promote RNA decay, such as cold shock domain containing protein E1 (CSDE1), K-homology domain splicing regulatory protein (KSRP), and CUG-BP1 and ETR3-like factors 1 (CELF1), bind to 3' regions of fetal liver transcripts. These data suggest that transitions among RBPs associated with fetal liver transcripts shift regulation from stabilization to decay, leading to a postnatal decrease in those fetal transcripts.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Fígado/metabolismo , Estabilidade de RNA , Animais , Proteínas CELF1/genética , Proteínas CELF1/metabolismo , Feminino , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Fígado/embriologia , Camundongos , Camundongos Endogâmicos C57BL , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transativadores/genética , Transativadores/metabolismo , alfa-Fetoproteínas/genética , alfa-Fetoproteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA