Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Biochem Biophys Res Commun ; 706: 149746, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38461646

RESUMO

Polyglycine hydrolases are fungal effectors composed of an N-domain with unique sequence and structure and a C-domain that resembles ß-lactamases, with serine protease activity. These secreted fungal proteins cleave Gly-Gly bonds within a polyglycine sequence in corn ChitA chitinase. The polyglycine hydrolase N-domain (PND) function is unknown. In this manuscript we provide evidence that the PND does not directly participate in ChitA cleavage. In vitro analysis of site-directed mutants in conserved residues of the PND of polyglycine hydrolase Es-cmp did not specifically impair protease activity. Furthermore, in silico structural models of three ChitA-bound polyglycine hydrolases created by High Ambiguity Driven protein-protein DOCKing (HADDOCK) did not predict significant interactions between the PND and ChitA. Together these results suggest that the PND has another function. To determine what types of PND-containing proteins exist in nature we performed a computational analysis of Foldseek-identified PND-containing proteins. The analysis showed that proteins with PNDs are present throughout biology as either single domain proteins or fused to accessory domains that are diverse but are usually proteases or kinases.


Assuntos
Peptídeo Hidrolases , Peptídeos , Peptídeos/química , Peptídeo Hidrolases/metabolismo , Endopeptidases/metabolismo , Proteólise
2.
Mol Plant Microbe Interact ; 36(8): 478-488, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36853197

RESUMO

Fusarium head blight (FHB) caused by Fusarium graminearum is one of the most devastating diseases of wheat and barley worldwide. Effectors suppress host immunity and promote disease development. The genome of F. graminearum contains hundreds of effectors with unknown function. Therefore, investigations of the functions of these effectors will facilitate developing novel strategies to enhance wheat resistance to FHB. We characterized a F. graminearum effector, FgNls1, containing a signal peptide and multiple eukaryotic nuclear localization signals. A fusion protein of green fluorescent protein and FgNls1 accumulated in plant cell nuclei when transiently expressed in Nicotiana benthamiana. FgNls1 suppressed Bax-induced cell death when co-expressed in N. benthamiana. We revealed that the expression of FgNLS1 was induced in wheat spikes infected with F. graminearum. The Fgnls1 mutants significantly reduced initial infection and FHB spread within a spike. The function of FgNLS1 was restored in the Fgnls1-complemented strains. Wheat histone 2B was identified as an interacting protein by FgNls1-affinity chromatography. Furthermore, transgenic wheat plants that silence FgNLS1 expression had significantly lower FHB severity than control plants. This study demonstrates a critical role of FgNls1 in F. graminearum pathogenesis and indicates that host-induced gene silencing targeting F. graminearum effectors is a promising approach to enhance FHB resistance. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Fusarium , Fusarium/genética , Triticum/genética , Plantas Geneticamente Modificadas , Núcleo Celular , Doenças das Plantas
3.
Protein Expr Purif ; 194: 106076, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35240278

RESUMO

Producing recombinant proteins with incorporated selenomethionine (SeMet) facilitates solving X-ray crystallographic structures of novel proteins. Production of SeMet labeled proteins in the yeast Pichia pastoris (syn. Komagataella phaffii) is difficult because SeMet is mildly toxic, reducing protein expression levels. To counteract this yield loss for a novel protease, Epicoccum sorghi chitinase modifying protein (Es-cmp), a novel disease promoting protease secreted by these plant pathogenic fungi, we isolated a yeast strain that secreted more protein. By comparing the expression level of 48 strains we isolated one that produced significantly more protein. This strain was found to be gene dosed, having four copies of the expression cassette. After optimization the strain produced Es-cmp in defined media with SeMet at levels nearly equal to that of the original strain in complex media. Also, we produced SeMet labeled protein for a homologous protease from the fungus Fusarium vanettenii, Fvan-cmp, by directly selecting a gene dosed strain on agar plates with increased zeocin. Linearization of plasmid with PmeI before electroporation led to high numbers of 1 mg/mL zeocin resistant clones with significantly increased expression compared to those selected on 0.1 mg/mL. The gene dosed strains expressing Es-cmp and Fvan-cmp allowed production of 8.5 and 16.8 mg of SeMet labeled protein from 500 mL shake flask cultures. The results demonstrate that selection of P. pastoris expression strains by plating after transformation on agar with 1 mg/mL zeocin rather than the standard 0.1 mg/mL directly selects gene dosed strains that can facilitate production of selenomethionine labeled proteins.


Assuntos
Quitinases , Selenometionina , Ágar/metabolismo , Ascomicetos , Quitinases/metabolismo , Endopeptidases/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeos , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/química , Saccharomycetales , Selenometionina/metabolismo
4.
BMC Genomics ; 21(1): 510, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32703172

RESUMO

BACKGROUND: Sphingolipids are structural components and signaling molecules in eukaryotic membranes, and many organisms produce compounds that inhibit sphingolipid metabolism. Some of the inhibitors are structurally similar to the sphingolipid biosynthetic intermediate sphinganine and are referred to as sphinganine-analog metabolites (SAMs). The mycotoxins fumonisins, which are frequent contaminants in maize, are one family of SAMs. Due to food and feed safety concerns, fumonisin biosynthesis has been investigated extensively, including characterization of the fumonisin biosynthetic gene cluster in the agriculturally important fungi Aspergillus and Fusarium. Production of several other SAMs has also been reported in fungi, but there is almost no information on their biosynthesis. There is also little information on how widely SAM production occurs in fungi or on the extent of structural variation of fungal SAMs. RESULTS: Using fumonisin biosynthesis as a model, we predicted that SAM biosynthetic gene clusters in fungi should include a polyketide synthase (PKS), an aminotransferase and a dehydrogenase gene. Surveys of genome sequences identified five putative clusters with this three-gene combination in 92 of 186 Fusarium species examined. Collectively, the putative SAM clusters were distributed widely but discontinuously among the species. We propose that the SAM5 cluster confers production of a previously reported Fusarium SAM, 2-amino-14,16-dimethyloctadecan-3-ol (AOD), based on the occurrence of AOD production only in species with the cluster and on deletion analysis of the SAM5 cluster PKS gene. We also identified SAM clusters in 24 species of other fungal genera, and propose that one of the clusters confers production of sphingofungin, a previously reported Aspergillus SAM. CONCLUSION: Our results provide a genomics approach to identify novel SAM biosynthetic gene clusters in fungi, which should in turn contribute to identification of novel SAMs with applications in medicine and other fields. Information about novel SAMs could also provide insights into the role of SAMs in the ecology of fungi. Such insights have potential to contribute to strategies to reduce fumonisin contamination in crops and to control crop diseases caused by SAM-producing fungi.


Assuntos
Fumonisinas , Fusarium , Fungos , Fusarium/genética , Família Multigênica , Esfingolipídeos
6.
Fungal Genet Biol ; 141: 103399, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32387407

RESUMO

Subtilases are a large family of serine proteases that occur throughout biology. A small subset contain protease-associated (PA) domains that are structurally separate from but encoded within the active site. In bacteria, subtilase PA domains function to recruit specific protein substrates. Here we demonstrate that a protease secreted by the fungal corn pathogen Stenocarpella maydis, which truncates corn ChitA chitinase, is a PA domain subtilase. Protease was purified from S. maydis cultures and tryptic peptides were analyzed by LC-MS/MS. Ions were mapped to two predicted PA domain subtilases. Yeast strains were engineered to express each protease. One failed to produce recombinant protein while the other secreted protease that truncated ChitA. This protease, that we named kilbournase, was purified and characterized. It cleaved multiple peptide bonds in the amino-terminal chitin binding domain of ChitA while leaving the catalytic domain intact. Kilbournase was more active on the ChitA-B73 alloform compared to ChitA-LH82 and did not cleave AtChitIV3, a homolog from Arabidopsis thaliana, indicating a high level of specificity. Truncation of corn ChitA by kilbournase resembles truncation of human C5a by Streptococcus pyogenes ScpA, arguing that PA domain proteases in bacteria and fungi may commonly target specific host proteins.


Assuntos
Ascomicetos/genética , Peptídeo Hidrolases/genética , Subtilisinas/genética , Zea mays/genética , Arabidopsis/genética , Ascomicetos/patogenicidade , Domínio Catalítico/genética , Quitinases/genética , Quitinases/isolamento & purificação , Cromatografia Líquida , Peptídeo Hidrolases/isolamento & purificação , Espectrometria de Massas em Tandem , Zea mays/microbiologia
7.
Mol Plant Microbe Interact ; 32(7): 888-898, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30759350

RESUMO

Fusarium head blight (FHB) of wheat and barley caused by the fungus Fusarium graminearum reduces crop yield and contaminates grain with mycotoxins. In this study, we investigated two exo-1,5-α-L-arabinanases (Arb93A and Arb93B) secreted by F. graminearum and their effect on wheat head blight development. Arabinan is an important component of plant cell walls but it was not known whether these arabinanases play a role in FHB. Both ARB93A and ARB93B were induced during the early stages of infection. arb93A mutants did not exhibit a detectable change in ability to cause FHB, whereas arb93B mutants caused lower levels of FHB symptoms and deoxynivalenol contamination compared with the wild type. Furthermore, virulence and deoxynivalenol contamination were restored to wild-type levels in ARB93B complemented mutants. Fusion proteins of green fluorescent protein (GFP) with the predicted chloroplast peptide or the mature protein of Arb93B were not observed in the chloroplast. Reactive oxygen species (ROS) production was reduced in the infiltrated zones of Nicotiana benthamiana leaves expressing ARB93B-GFP. Coexpression of ARB93B-GFP and Bax in N. benthamiana leaves significantly suppressed Bax-programmed cell death. Our results indicate that Arb93B enhances plant disease susceptibility by suppressing ROS-associated plant defense responses.


Assuntos
Fusarium , Glicosídeo Hidrolases , Micotoxinas , Imunidade Vegetal , Triticum , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/enzimologia , Fusarium/genética , Fusarium/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Mutação , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Triticum/imunologia , Triticum/microbiologia
8.
Biochem J ; 460(2): 187-98, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24627966

RESUMO

Cmps (chitinase-modifying proteins) are fungal proteases that truncate plant class IV chitinases by cleaving near their N-termini. We previously described Fv-cmp, a fungalysin protease that cleaves a conserved glycine-cysteine bond within the hevein domain. In the present paper we describe a new type of cmp, polyglycine hydrolases, as proteases that selectively cleave glycine-glycine peptide bonds within the polyglycine linker of plant class IV chitinases. Polyglycine hydrolases were purified from Cochliobolus carbonum (syn. Bipolaris zeicola; Bz-cmp) and Epicoccum sorghi (syn. Phoma sorghina; Es-cmp) and were shown to cleave three different maize class IV chitinase substrates. The proteolytic cleavage sites were assessed by SDS/PAGE and MALDI-TOF-MS and indicated the cleavage of multiple peptide bonds within the polyglycine linker regions. Site-directed mutagenesis was used to produce mutants of maize ChitB chitinase in which two serine residues in its linker were systematically modified to glycine. Serine to glycine changes in the ChitB linker resulted in higher susceptibility to truncation by Bz-cmp and altered substrate specificity for Bz-cmp and Es-cmp, such that different glycine-glycine peptide bonds were cleaved. Removal of the hevein domain led to loss of Es-cmp activity, indicating that interactions outside of the active site are important for recognition. Our findings demonstrate that plant class IV chitinases with polyglycine linkers are targeted for truncation by selective polyglycine hydrolases that are secreted by plant pathogenic fungi. This novel proteolysis of polyglycine motifs is previously unreported, but the specificity is similar to that of bacterial lysostaphin proteases, which cleave pentaglycine cross-links from peptidoglycan.


Assuntos
Ascomicetos/enzimologia , Quitinases/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeos/metabolismo , Domínio Catalítico , Quitinases/genética , Mutagênese Sítio-Dirigida , Peptídeo Hidrolases/isolamento & purificação , Plantas , Especificidade por Substrato
9.
Acta Crystallogr D Struct Biol ; 79(Pt 2): 168-176, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36762862

RESUMO

Polyglycine hydrolases (PGHs) are secreted fungal proteases that cleave the polyglycine linker of Zea mays ChitA, a defensive chitinase, thus overcoming one mechanism of plant resistance to infection. Despite their importance in agriculture, there has been no previous structural characterization of this family of proteases. The objective of this research was to investigate the proteolytic mechanism and other characteristics by structural and biochemical means. Here, the first atomic structure of a polyglycine hydrolase was identified. It was solved by X-ray crystallography using a RoseTTAFold model, taking advantage of recent technical advances in structure prediction. PGHs are composed of two domains: the N- and C-domains. The N-domain is a novel tertiary fold with an as-yet unknown function that is found across all kingdoms of life. The C-domain shares structural similarities with class C ß-lactamases, including a common catalytic nucleophilic serine. In addition to insights into the PGH family and its relationship to ß-lactamases, the results demonstrate the power of complementing experimental structure determination with new computational techniques.


Assuntos
Quitinases , Peptídeos , Peptídeo Hidrolases , beta-Lactamases/química , Quitinases/química , Endopeptidases , Cristalografia por Raios X
10.
ACS Chem Biol ; 18(10): 2267-2280, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37788216

RESUMO

Tunicamycins (TUNs) are Streptomyces-derived natural products, widely used to block protein N-glycosylation in eukaryotes or cell wall biosynthesis in bacteria. Modified or synthetic TUN analogues that uncouple these activities have considerable potential as novel mode-of-action antibacterial agents. Chemically modified TUNs reported previously with attenuated activity on yeast have pinpointed eukaryotic-specific chemophores in the uridyl group and the N-acyl chain length and terminal branching pattern. A small molecule screen of fatty acid biosynthetic primers identified several novel alicyclic- and neo-branched TUN N-acyl variants, with primer incorporation at the terminal omega-acyl position. TUNs with unique 5- and 6-carbon ω-cycloalkane and ω-cycloalkene acyl chains are produced under fermentation and in yields comparable with the native TUN. The purification, structural assignments, and the comparable antimicrobial properties of 15 of these compounds are reported, greatly extending the structural diversity of this class of compounds for potential medicinal and agricultural applications.


Assuntos
Antibacterianos , Ácidos Graxos , Tunicamicina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Glicosilação
11.
J Biol Chem ; 286(41): 35358-35366, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21878653

RESUMO

Chitinase-modifying proteins (cmps) are proteases secreted by fungal pathogens that truncate the plant class IV chitinases ChitA and ChitB during maize ear rot. cmp activity has been characterized for Bipolaris zeicola and Stenocarpella maydis, but the identities of the proteases are not known. Here, we report that cmps are secreted by multiple species from the genus Fusarium, that cmp from Fusarium verticillioides (Fv-cmp) is a fungalysin metalloprotease, and that it cleaves within a sequence that is conserved in class IV chitinases. Protein extracts from Fusarium cultures were found to truncate ChitA and ChitB in vitro. Based on this activity, Fv-cmp was purified from F. verticillioides. N-terminal sequencing of truncated ChitA and MALDI-TOF-MS analysis of reaction products showed that Fv-cmp is an endoprotease that cleaves a peptide bond on the C-terminal side of the lectin domain. The N-terminal sequence of purified Fv-cmp was determined and compared with a set of predicted proteins, resulting in its identification as a zinc metalloprotease of the fungalysin family. Recombinant Fv-cmp also truncated ChitA, confirming its identity, but had reduced activity, suggesting that the recombinant protease did not mature efficiently from its propeptide-containing precursor. This is the first report of a fungalysin that targets a nonstructural host protein and the first to implicate this class of virulence-related proteases in plant disease.


Assuntos
Quitinases/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium/enzimologia , Metaloproteases/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/enzimologia , Quitinases/genética , Proteínas Fúngicas/genética , Fusarium/genética , Fusarium/patogenicidade , Metaloproteases/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Zea mays/genética , Zea mays/microbiologia
12.
Anal Biochem ; 411(1): 94-9, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21187055

RESUMO

A high-throughput matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) assay is described for determination of chitolytic enzyme activity. The assay uses unmodified chitin oligosaccharide substrates and is readily achievable on a microliter scale (2µl of total volume containing 2µg of substrate and 1ng of protein). The speed and sensitivity of the assay make it potentially well suited for the high-throughput screening of chitinase inhibitors. The mass spectrum is acquired in approximately 2min, as opposed to typically 30-40min for a single run with a high-performance liquid chromatography (HPLC)-based assay. By using the multiple-place MALDI MS targets, we estimate that 100 assays could be run in approximately 2-3h without needing to remove the target from the instrument. In addition, because the substrate and product chitomers are visualized simultaneously in the TOF spectrum, this gives immediate information about the cleavage site and mechanism of the enzyme under study. The assay was used to monitor the purification and transgenic expression of plant class IV chitinases. By performing the assay with chitomer substrates and C-glycoside chitomer analogs, the enzyme mechanism of the class IV chitinases is described for the first time.


Assuntos
Quitinases/metabolismo , Ensaios Enzimáticos/métodos , Ensaios de Triagem em Larga Escala/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Quitina/metabolismo , Quitinases/química , Glicosídeos , Cetonas/química , Cetonas/metabolismo , Peso Molecular , Monossacarídeos/química , Monossacarídeos/metabolismo , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Pichia/metabolismo , Plantas Geneticamente Modificadas , Especificidade por Substrato , Fatores de Tempo , Zea mays/enzimologia , Zea mays/genética
13.
Nat Chem Biol ; 5(9): 655-63, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19597508

RESUMO

Phage display has demonstrated the utility of cyclic peptides as general protein ligands but cannot access proteins inside eukaryotic cells. Expanding a new chemical genetics tool, we describe the first expressed library of head-to-tail cyclic peptides in yeast (Saccharomyces cerevisiae). We applied the library to selections in a yeast model of alpha-synuclein toxicity that recapitulates much of the cellular pathology of Parkinson's disease. From a pool of 5 million transformants, we isolated two related cyclic peptide constructs that specifically reduced the toxicity of human alpha-synuclein. These expressed cyclic peptide constructs also prevented dopaminergic neuron loss in an established Caenorhabditis elegans Parkinson's model. This work highlights the speed and efficiency of using libraries of expressed cyclic peptides for forward chemical genetics in cellular models of human disease.


Assuntos
Caenorhabditis elegans/metabolismo , Transtornos Parkinsonianos/metabolismo , Biblioteca de Peptídeos , Peptídeos Cíclicos/biossíntese , Saccharomyces cerevisiae/metabolismo , alfa-Sinucleína/biossíntese , Animais , Caenorhabditis elegans/genética , Humanos , Neurônios/metabolismo , Neurônios/patologia , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/patologia , Peptídeos Cíclicos/genética , Mutação Puntual , Regiões Promotoras Genéticas , Dobramento de Proteína , Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade
14.
Phytopathology ; 100(7): 645-54, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20528182

RESUMO

Stenocarpella maydis causes both dry-ear rot and stalk rot of maize. Maize inbred lines have varying levels of resistance to ear rot caused by S. maydis. The genetic basis of resistance appears to rely on multiple genetic factors, none of which are known. The commonly used stiff-stalk inbred line B73 has been shown to be strongly susceptible to ear rot caused by S. maydis. Here, we report that the ChitA protein alloform from B73, ChitA-F, encoded by a known allele of the chiA gene, is susceptible to modification by a protein (Stm-cmp) secreted by S. maydis. We also identify a new allele of chiA (from inbred line LH82) which encodes ChitA-S, an alloform of ChitA that is resistant to Stm-cmp modification. Chitinase zymogram analysis of seed from a commercial field showed the presence of both ChitA alloforms in healthy ears, and showed that ChitA-F but not ChitA-S was modified in ears rotted by S. maydis. The ChitA-F protein was purified from inbred line B73 and ChitA-S from LH82. ChitA-F was modified more efficiently than ChitA-S by S. maydis protein extracts in vitro. The chiA gene from LH82 was cloned and sequenced. It is a novel allele that encodes six polymorphisms relative to the known allele from B73. This is the first demonstration that the susceptibility to modification of a fungal targeted plant chitinase differs among inbred lines. These findings suggest that the LH82 chiA allele may be a specific genetic determinant that contributes to resistance to ear rot caused by S. maydis whereas the B73 allele may contribute to susceptibility.


Assuntos
Ascomicetos/fisiologia , Quitinases/metabolismo , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Parasita , Zea mays/enzimologia , Sequência de Aminoácidos , Sequência de Bases , Quitinases/genética , Quitinases/isolamento & purificação , Isoenzimas/genética , Isoenzimas/isolamento & purificação , Isoenzimas/metabolismo , Dados de Sequência Molecular , Doenças das Plantas/genética , Sementes/enzimologia , Análise de Sequência de DNA , Análise de Sequência de Proteína , Zea mays/genética , Zea mays/microbiologia
15.
Front Microbiol ; 9: 3219, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30671040

RESUMO

Salicylic acid (SA) plays an important role in regulating plant defense responses against pathogens. However, pathogens have evolved ways to manipulate plant SA-mediated defense signaling. Fusarium graminearum causes Fusarium head blight (FHB) and reduces crop yields and quality by producing various mycotoxins. In this study, we aimed to identify the salicylate hydroxylase in F. graminearum and determine its role in wheat head blight development. We initially identified a gene in F. graminearum strain NRRL 46422 that encodes a putative salicylate hydroxylase (designated FgShyC). However, the FgShyC deletion mutant showed a similar ability to degrade SA as wild-type strain 46422; nor did overexpression of FgShyC in E. coli convert SA to catechol. The results indicate that FgShyC is not involved in SA degradation. Further genome sequence analyses resulted in the identification of eight salicylate hydroxylase candidates. Upon addition of 1 mM SA, FGSG_03657 (designated FgShy1), was induced approximately 400-fold. Heterologous expression of FgShy1 in E. coli converted SA to catechol, confirming that FgShy1 is a salicylate hydroxylase. Deletion mutants of FgShy1 were greatly impaired but not completely blocked in SA degradation. Expression analyses of infected tissue showed that FgShy1 was induced during infection, but virulence assays revealed that deletion of FgShy1 alone was not sufficient to affect FHB severity. Although the Fgshy1 deletion mutant did not reduce pathogenicity, we cannot rule out that additional salicylate hydroxylases are present in F. graminearum and characterization of these enzymes will be necessary to fully understand the role of SA-degradation in FHB pathogenesis.

16.
Protein Sci ; 16(8): 1535-42, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17600141

RESUMO

A method to rapidly screen libraries of cyclic peptides in vivo for molecules with biological activity has been developed and used to isolate cyclic peptide inhibitors of the ClpXP protease. Fluorescence activated cell sorting was used in conjunction with a fluorescent reporter to isolate cyclic peptides that inhibit the proteolysis of tmRNA-tagged proteins in Escherichia coli. Inhibitors shared little sequence similarity and interfered with unexpected steps in the ClpXP mechanism in vitro. One cyclic peptide, IXP1, inhibited the degradation of unrelated ClpXP substrates and has bactericidal activity when added to growing cultures of Caulobacter crescentus, a model organism that requires ClpXP activity for viability. The screen used here could be adapted to identify cyclic peptide inhibitors of any enzyme that can be expressed in E. coli in conjunction with a fluorescent reporter.


Assuntos
Antibacterianos/isolamento & purificação , Proteínas de Bactérias/antagonistas & inibidores , Endopeptidase Clp/antagonistas & inibidores , Peptídeos Cíclicos/isolamento & purificação , Peptídeos Cíclicos/farmacologia , Inibidores de Proteases/isolamento & purificação , Inibidores de Proteases/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Caulobacter crescentus/enzimologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Modelos Biológicos , Biblioteca de Peptídeos , Peptídeos Cíclicos/química , Inibidores de Proteases/química , Especificidade por Substrato
17.
Protein Sci ; 26(6): 1214-1223, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28383143

RESUMO

Polyglycine hydrolases (PGH)s are secreted fungal endoproteases that cleave peptide bonds in the polyglycine interdomain linker of ChitA chitinase, an antifungal protein from domesticated corn (Zea mays ssp. mays). These target-specific endoproteases are unusual because they do not cut a specific peptide bond but select one of many Gly-Gly bonds within the polyglycine region. Some Gly-Gly bonds are cleaved frequently while others are never cleaved. Moreover, we have previously shown that PGHs from different fungal pathogens prefer to cleave different Gly-Gly peptide bonds. It is not understood how PGHs selectively cleave the ChitA linker, especially because its polyglycine structure lacks peptide sidechains. To gain insights into this process we synthesized several peptide analogs of ChitA to evaluate them as potential substrates and inhibitors of Es-cmp, a PGH from the plant pathogenic fungus Epicoccum sorghi. Our results showed that part of the PGH recognition site for substrate chitinases is adjacent to the polyglycine linker on the carboxy side. More specifically, four amino acid residues were implicated, each spaced four residues apart on an alpha helix. Moreover, analogous peptides with selective Gly->sarcosine (N-methylglycine) mutations or a specific Ser->Thr mutation retained inhibitor activity but were no longer cleaved by PGH. Additonally, our findings suggest that peptide analogs of ChitA that inhibit PGH activity could be used to strengthen plant defenses.


Assuntos
Ascomicetos/enzimologia , Quitinases/química , Proteínas Fúngicas/química , Peptídeo Hidrolases/química , Proteínas de Plantas/química , Zea mays/enzimologia , Quitinases/metabolismo , Proteínas Fúngicas/metabolismo , Peptídeo Hidrolases/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Zea mays/microbiologia
18.
J Antibiot (Tokyo) ; 70(11): 1070-1077, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28951601

RESUMO

Tunicamycins (TUN) are inhibitors of the UDP-HexNAc: polyprenol-P HexNAc-1-P transferase family of enzymes, which initiate the biosynthesis of bacterial peptidoglycan and catalyze the first step in eukaryotic protein N-glycosylation. The TUN are therefore general and potent toxins to both eukaryotes and prokaryotes. Screening a library of synthetic TUN against Bacillus and yeast identified TUN that are antibacterial, but have significantly reduced eukaryotic toxicity. One of these (Tun-15:0) differs from the native TUN control only by the lack of the conjugated double bond in the tunicaminyl N-acyl group. Tun-15:0 also showed reduced inhibition for protein N-glycosylation in a Pichia-based bioassay. Natural TUN was subsequently modified by chemically reducing the N-acyl double bond (TunR1) or both the N-acyl and uridyl double bonds (TunR2). TunR1 and TunR2 retain their antibacterial activity, but with considerably reduced eukaryotic toxicity. In protein N-glycosylation bioassays, TunR1 is a less potent inhibitor than native TUN and TunR2 is entirely inactive. Importantly, the less toxic TunR1 and TunR2 both enhance the antibacterial activity of ß-lactams: oxacillin by 32- to 64-fold, comparable with native TUN, and with similar enhancements for methicillin and penicillin G. Hence, the modified TUNs, TunR1 and TunR2, are potentially important as less-toxic synergistic enhancers of the ß-lactams.


Assuntos
Antibacterianos/farmacologia , Tunicamicina/farmacologia , beta-Lactamas/farmacologia , Antibacterianos/química , Antibacterianos/toxicidade , Sinergismo Farmacológico , Eucariotos/efeitos dos fármacos , Glicosilação/efeitos dos fármacos , Meticilina/administração & dosagem , Meticilina/farmacologia , Oxacilina/administração & dosagem , Oxacilina/farmacologia , Penicilina G/administração & dosagem , Penicilina G/farmacologia , Tunicamicina/química , Tunicamicina/toxicidade , beta-Lactamas/administração & dosagem
19.
Nucleic Acids Res ; 30(21): e119, 2002 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-12409478

RESUMO

The use of in vivo and in vitro transposition reactions to perform non-combinatorial manipulation of DNAs in molecular biology is widespread. In this work we describe a technique that utilizes two sequential, directed transposition reactions in order to carry out combinatorial DNA manipulations. The methodology relies on the use of two different mutant Tn5 transposase proteins that have different transposon end recognition specificities. We demonstrate that the technique can be used to create large libraries of random fusions between two genes. These transpositional fusions are defined by insertion of a 32 bp linker sequence. We applied the technique to a model system, chloramphenicol acetyl transferase, to create functional fusions from N- and C-terminally truncated, non-functional genes. Comparative structural analysis suggests that both sides of the linker are inserted into disordered regions in functional proteins.


Assuntos
Técnicas de Química Combinatória/métodos , Biblioteca Gênica , Proteínas Recombinantes de Fusão/genética , Recombinação Genética/genética , Transposases/metabolismo , Sequência de Bases , Cloranfenicol O-Acetiltransferase/genética , DNA Recombinante/genética , Engenharia Genética/métodos , Mutação , Plasmídeos/genética , Especificidade por Substrato , Transposases/genética
20.
J Antibiot (Tokyo) ; 69(8): 637-46, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27189123

RESUMO

Tunicamycins (TUN) are potent inhibitors of polyprenyl phosphate N-acetylhexosamine 1-phosphate transferases (PPHP), including essential eukaryotic GPT enzymes and bacterial HexNAc 1-P translocases. Hence, TUN blocks the formation of eukaryotic N-glycoproteins and the assembly of bacterial call wall polysaccharides. The genetic requirement for TUN production is well-established. Using two genes unique to the TUN pathway (tunB and tunD) as probes we identified four new prospective TUN-producing strains. Chemical analysis showed that one strain, Streptomyces niger NRRL B-3857, produces TUN plus new compounds, named quinovosamycins (QVMs). QVMs are structurally akin to TUN, but uniquely in the 1″,11'-HexNAc sugar head group, which is invariably d-GlcNAc for the known TUN, but is d-QuiNAc for the QVM. Surprisingly, this modification has only a minor effect on either the inhibitory or antimicrobial properties of QVM and TUN. These findings have unexpected consequences for TUN/QVM biosynthesis, and for the specificity of the PPHP enzyme family.


Assuntos
Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Streptomyces/metabolismo , Tunicamicina/farmacologia , Acetilglucosamina/química , Antibacterianos/química , Antibacterianos/isolamento & purificação , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Glucosamina/análogos & derivados , Glucosamina/química , Streptomyces/genética , Tunicamicina/química , Tunicamicina/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA