Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Environ Res ; 204(Pt A): 111904, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34418449

RESUMO

Endocrine disrupting chemicals (EDCs) are ubiquitous in the environment and involve diverse chemical-receptor interactions that can perturb hormone signaling. The Organization for Economic Co-operation and Development has validated several EDC-receptor bioassays to detect endocrine active chemicals and has established guidelines for regulatory testing of EDCs. Focus on testing over the past decade has been initially directed to EATS modalities (estrogen, androgen, thyroid, and steroidogenesis) and validated tests for chemicals that exert effects through non-EATS modalities are less established. Due to recognition that EDCs are vast in their mechanisms of action, novel bioassays are needed to capture the full scope of activity. Here, we highlight the need for validated assays that detect non-EATS modalities and discuss major international efforts underway to develop such tools for regulatory purposes, focusing on non-EATS modalities of high concern (i.e., retinoic acid, aryl hydrocarbon receptor, peroxisome proliferator-activated receptor, and glucocorticoid signaling). Two case studies are presented with strong evidence amongst animals and human studies for non-EATS disruption and associations with wildlife and human disease. This includes metabolic syndrome and insulin signaling (case study 1) and chemicals that impact the cardiovascular system (case study 2). This is relevant as obesity and cardiovascular disease represent two of the most significant health-related crises of our time. Lastly, emerging topics related to EDCs are discussed, including recognition of crosstalk between the EATS and non-EATS axis, complex mixtures containing a variety of EDCs, adverse outcome pathways for chemicals acting through non-EATS mechanisms, and novel models for testing chemicals. Recommendations and considerations for evaluating non-EATS modalities are proposed. Moving forward, improved understanding of the non-EATS modalities will lead to integrated testing strategies that can be used in regulatory bodies to protect environmental, animal, and human health from harmful environmental chemicals.


Assuntos
Disruptores Endócrinos , Animais , Animais Selvagens , Bioensaio , Disruptores Endócrinos/toxicidade , Sistema Endócrino , Humanos , Obesidade
2.
Environ Res ; 205: 112483, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863984

RESUMO

Endocrine disrupting chemicals (EDCs) are found in every environmental medium and are chemically diverse. Their presence in water resources can negatively impact the health of both human and wildlife. Currently, there are no mandatory screening mandates or regulations for EDC levels in complex water samples globally. Bioassays, which allow quantifying in vivo or in vitro biological effects of chemicals are used commonly to assess acute toxicity in water. The existing OECD framework to identify single-compound EDCs offers a set of bioassays that are validated for the Estrogen-, Androgen-, and Thyroid hormones, and for Steroidogenesis pathways (EATS). In this review, we discussed bioassays that could be potentially used to screen EDCs in water resources, including in vivo and in vitro bioassays using invertebrates, fish, amphibians, and/or mammalians species. Strengths and weaknesses of samples preparation for complex water samples are discussed. We also review how to calculate the Effect-Based Trigger values, which could serve as thresholds to determine if a given water sample poses a risk based on existing quality standards. This work aims to assist governments and regulatory agencies in developing a testing strategy towards regulation of EDCs in water resources worldwide. The main recommendations include 1) opting for internationally validated cell reporter in vitro bioassays to reduce animal use & cost; 2) testing for cell viability (a critical parameter) when using in vitro bioassays; and 3) evaluating the recovery of the water sample preparation method selected. This review also highlights future research avenues for the EDC screening revolution (e.g., 3D tissue culture, transgenic animals, OMICs, and Adverse Outcome Pathways (AOPs)).


Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Animais , Bioensaio , Disruptores Endócrinos/toxicidade , Estrogênios , Mamíferos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Recursos Hídricos
3.
Environ Res ; 214(Pt 1): 113760, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35753374

RESUMO

The potential spreading of antibiotic resistance genes (ARG) into agricultural fields and crops represent a fundamental limitation on the use of organic fertilization in food production systems. We present here a study of the effect of spreading four types of organic soil amendments (raw pig slurry, liquid and solid fractions, and a digested derivative) on demonstrative plots in two consecutive productive cycles of corn harvest (Zea mays), using a mineral fertilizer as a control, following the application of organic amendments at 32-62 T per ha (150 kg total N/ha) and allowing 5-8 months between fertilization and harvest. A combination of qPCR and high-throughput 16S rDNA sequencing methods showed a small, but significant impact of the fertilizers in both ARG loads and microbiomes in soil samples, particularly after the second harvesting cycle. The slurry solid fraction showed the largest impact on both ARG loads and microbiome variation, whereas its digestion derivatives showed a much smaller impact. Soil samples with the highest ARG loads also presented increased levels of tetracyclines, indicating a potential dual hazard by ARG and antibiotic residues linked to some organic amendments. Unlike soils, no accumulation of ARG or antibiotics was observed in corn leaves (used as fodder) or grains, and no grain sample reached detection limits for neither parameter. These results support the use of organic soil amendments in corn crops, while proposing the reduction of the loads of ARGs and antibiotics from the fertilizers to greatly reduce their potential risk.


Assuntos
Microbiota , Solo , Animais , Antibacterianos , Produtos Agrícolas , Resistência Microbiana a Medicamentos , Fertilizantes , Esterco , Microbiologia do Solo , Suínos , Zea mays
4.
Environ Res ; 194: 110513, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33242487

RESUMO

The spread of antibiotic resistance in bacteria is a matter of global concern, and the identification of possible sources of the associated genetic elements (antibiotic resistance genes -ARGs-, components of the horizontal gene transfer mechanism), is becoming an urgent need. While the transmission of ARGs in medical settings have been adequately characterized, ARG propagation in agroecosystems remains insufficiently studied. Particularly crucial is the determination of potential risks associated to the use of swine slurries and related products as component of organic fertilizers, an increasingly used farming practice. We determined ARGs and antibiotic loads analysed from swine slurries and digestates from eight farms from Catalonia (NE Spain), and compared the results with their microbiome composition. Both ARGs and antibiotic were conspicuous in farm organic wastes, and the levels of some antibiotics exceeded currently accepted minimum inhibitory concentrations. Particularly, the presence of high loads of fluoroquinolones was directly correlated to the prevalence of the related qnrS1 ARG in the slurry. We also found evidence that ARG loads were directly correlated to the prevalence of determined bacterial taxa (Actinobacteria, Proteobacteria, Spirochaeta), a parameter that could be potentially modulated by the processing of the raw slurry prior to their use as fertilizer.


Assuntos
Fertilizantes , Esterco , Agricultura , Animais , Antibacterianos , Fertilizantes/análise , Genes Bacterianos , Solo , Microbiologia do Solo , Espanha , Suínos
5.
Environ Res ; 191: 109879, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32841899

RESUMO

The application of sewage sludge to agricultural fields reduces the need for mineral fertilizers by increasing soil organic matter, but may also increase soil pollution. Previous studies indicate that zinc and copper, as the most abundant elements in sewage sludge, affect plant uptake of other contaminants. This paper aims to investigate and compare the effect of increasing amounts of Zn and Cu in sludge-amended soils on the accumulation of trace elements (TEs), antibiotics (ABs), and antibiotic resistance genes (ARGs) in lettuce and radish. The vegetables were grown under controlled conditions, and the influence on plant physiology and human health were also evaluated. The results show that the addition of Zn and Cu significantly increased the concentration of TEs in the edible tissue of both vegetables. According to the hazard quotient (HQ) of the TEs, the human health risk increased 2 to 3 times and was 3-4 times greater in lettuce than in radish. In contrast to the TEs, the occurrence of ABs and most of the ARGs was higher in radish roots than lettuce leaves. ABs were not detected in lettuce leaves, and the amount of all ARGs except blaTEM was 10 times lower than in radish roots. On the other hand, the addition of Zn and Cu had no significant effect on the occurrence of ABs and ARGs in the edible part of the vegetables, and no damage was found to plant productivity or physiology. The results show that the consumption of lettuce and radish grown in sewage-sludge-amended soils under tested doses of Cu and Zn does not pose an adverse human health effect, as the total HQ value was always less than 1, and the presence of ABs and ARGs was not found to have any potential impact. Nevertheless, further studies are needed to estimate the long-term effect on human health of crops grown under frequent application of biosolids in arable soil.


Assuntos
Metais Pesados , Poluentes do Solo , Oligoelementos , Antibacterianos/toxicidade , Resistência Microbiana a Medicamentos , Humanos , Metais Pesados/análise , Esgotos , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Verduras , Zinco/análise
6.
Environ Sci Technol ; 53(22): 13427-13439, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31609598

RESUMO

The novel PFOS alternatives, 6:2 chlorinated polyfluorinated ether sulfonate (F-53B) and sodium p-perfluorous nonenoxybenzenesulfonate (OBS), are emerging in the Chinese market, but little is known about their ecological risks. In this study, zebrafish embryos were exposed to PFOS, F-53B, and OBS to evaluate their bioconcentration and acute metabolic consequences. Per- and polyfluoroalkyl substances (PFASs) accumulated in larvae in the order of F-53B > PFOS > OBS, with the bioconcentration factors ranging from 20 to 357. Exposure to F-53B and PFOS, but not OBS, increased energy expenditure, and reduced feed intake in a concentration-dependent manner and the expression of genes involved in metabolic pathways at the transcriptional and translational levels. Molecular docking revealed that the binding affinities of PFASs to glucokinase were decreased in the following order: F-53B > PFOS > OBS. Finally, the results of Point of Departure (PoD) indicate that metabolic end points at the molecular and organismal level are most sensitive to F-53B followed by PFOS and OBS. Collectively, F-53B has the highest bioconcentration potential and the strongest metabolism-disrupting effects, followed by PFOS and OBS. Our findings have important implications for the assessment of early developmental metabolic effects of PFOS alternatives F-53B and OBS in wildlife and humans.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Animais , Humanos , Simulação de Acoplamento Molecular , Peixe-Zebra
7.
Gen Comp Endocrinol ; 222: 33-43, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25623150

RESUMO

Numerous endocrine disrupting chemicals can affect the growth and development of amphibians. We investigated the effects of a targeted disruption of the endocrine axes modulating development and somatic growth. Wood frog (Lithobates sylvaticus) tadpoles were exposed for 2weeks (from developmental Gosner stage (Gs) 25 to Gs30) to sodium perchlorate (SP, thyroid inhibitor, 14mg/L), estradiol (E2, known to alter growth and development, 200nM) and a reduced feeding regime (RF, to affect growth and development in a chemically-independent manner). All treatments experienced developmental delay, and animals exposed to SP or subjected to RF respectively reached metamorphic climax (Gs42) approximately 11(±3) and 17(±3) days later than controls. At Gs42, only SP-treated animals showed increased weight and snout-vent length (P<0.05) relative to controls. Tadpoles treated with SP had 10-times higher levels of liver igf1 mRNA after 4days of exposure (Gs28) compared to controls. Tadpoles in the RF treatment expressed 6-times lower levels of liver igf1 mRNA and 2-times higher liver igf1r mRNA (P<0.05) at Gs30. Tadpoles treated with E2 exhibited similar developmental and growth patterns as controls, but had increased liver igf1 mRNA levels at Gs28, and tail igf1r at Gs42. Effects on tail trß mRNA levels were detected in SP-treated tadpoles at Gs42, 40days post-exposure, suggesting that the chemical inhibition of thyroid hormone production early in development can have long-lasting effects. The growth effects observed in the SP-exposed animals suggest a relationship between TH-dependent development and somatic growth in L. sylvaticus tadpoles.


Assuntos
Expressão Gênica/genética , Metamorfose Biológica/genética , Percloratos/metabolismo , Ranidae/fisiologia , Compostos de Sódio/metabolismo , Animais , Larva/crescimento & desenvolvimento
8.
J Toxicol Environ Health A ; 78(18): 1137-41, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26383587

RESUMO

Gonad-mesonephros complexes from wood frog (Lithobates sylvaticus) tadpoles were incubated in vitro for 1 wk to examine direct effects of naphthenic acids (NA) and 17α-ethinylestradiol (EE2) on ovarian differentiation. Histological images reveal successful preservation of gonadal integrity where cultured oocytes exhibited no significant differences in diameters and areas compared to uncultured conditions. Ovaries exposed to 10 µg/L 17α-EE2 contained oocytes with significantly advanced atresia and diminished areas and diameters, indicating a degree of ovarian regression. A significant reduction in oocyte area was observed in ovaries exposed to 3 mg/L of a commercial extract of petroleum-derived NA. This novel approach has applications for screening direct effects of endocrine-disrupting chemicals on gonadal function in tadpoles.


Assuntos
Disruptores Endócrinos/toxicidade , Técnicas In Vitro/métodos , Ovário/efeitos dos fármacos , Ranidae/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Feminino , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Ontário , Ranidae/crescimento & desenvolvimento
9.
Gen Comp Endocrinol ; 203: 69-85, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24685768

RESUMO

Thyroid hormones (THs) are well-known regulators of development and metabolism in vertebrates. There is increasing evidence that THs are also involved in gonadal differentiation and reproductive function. Changes in TH status affect sex ratios in developing fish and frogs and reproduction (e.g., fertility), hormone levels, and gonad morphology in adults of species of different vertebrates. In this review, we have summarized and compared the evidence for cross-talk between the steroid hormone and thyroid axes and present a comparative model. We gave special attention to TH regulation of sex steroid synthesis and action in both the brain and gonad, since these are important for gonad development and brain sexual differentiation and have been studied in many species. We also reviewed research showing that there is a TH system, including receptors and enzymes, in the brains and gonads in developing and adult vertebrates. Our analysis shows that THs influences sex steroid hormone synthesis in vertebrates, ranging from fish to pigs. This concept of crosstalk and conserved hormone interaction has implications for our understanding of the role of THs in reproduction, and how these processes may be dysregulated by environmental endocrine disruptors.


Assuntos
Hormônios Esteroides Gonadais/metabolismo , Gônadas/metabolismo , Receptor Cross-Talk/fisiologia , Diferenciação Sexual/fisiologia , Hormônios Tireóideos/metabolismo , Vertebrados/metabolismo , Animais , Feminino , Masculino , Reprodução/fisiologia , Glândula Tireoide/metabolismo
10.
Gen Comp Endocrinol ; 205: 242-50, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24852348

RESUMO

Estrogens and their receptors are present at very early stages of vertebrate embryogenesis before gonadal tissues are formed. However, the cellular source and the function of estrogens in embryogenesis remain major questions in developmental endocrinology. We demonstrate the presence of estrogen-synthesizing enzyme aromatase and G protein-coupled estrogen receptor (GPER) proteins throughout early embryogenesis in the model organism, Silurana tropicalis. We provide the first evidence of aromatase in the vertebrate lateral line. High levels of aromatase were detected in the mantle cells of neuromasts, the mechanosensory units of the lateral line, which persisted throughout the course of development (Nieuwkoop and Faber stages 34-47). We show that GPER is expressed in both the accessory and hair cells. Pharmacological activation of GPER with the agonist G-1 disrupted neuromast development and migration. Future study of this novel estrogen system in the amphibian lateral line may shed light on similar systems such as the mammalian inner ear.


Assuntos
Aromatase/metabolismo , Estrogênios/metabolismo , Sistema da Linha Lateral/citologia , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/embriologia , Xenopus/metabolismo , Animais , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Feminino , Imunofluorescência , Proteína Glial Fibrilar Ácida/metabolismo , Sistema da Linha Lateral/embriologia , Masculino , Neuroglia/metabolismo , Natação
11.
PLoS Genet ; 7(12): e1002447, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22242011

RESUMO

Sex ratio shifts in response to temperature are common in fish and reptiles. However, the mechanism linking temperature during early development and sex ratios has remained elusive. We show in the European sea bass (sb), a fish in which temperature effects on sex ratios are maximal before the gonads form, that juvenile males have double the DNA methylation levels of females in the promoter of gonadal aromatase (cyp19a), the enzyme that converts androgens into estrogens. Exposure to high temperature increased the cyp19a promoter methylation levels of females, indicating that induced-masculinization involves DNA methylation-mediated control of aromatase gene expression, with an observed inverse relationship between methylation levels and expression. Although different CpGs within the sb cyp19a promoter exhibited different sensitivity to temperature, we show that the increased methylation of the sb cyp19a promoter, which occurs in the gonads but not in the brain, is not a generalized effect of temperature. Importantly, these effects were also observed in sexually undifferentiated fish and were not altered by estrogen treatment. Thus, methylation of the sb cyp19a promoter is the cause of the lower expression of cyp19a in temperature-masculinized fish. In vitro, induced methylation of the sb cyp19a promoter suppressed the ability of SF-1 and Foxl2 to stimulate transcription. Finally, a CpG differentially methylated by temperature and adjacent to a Sox transcription factor binding site is conserved across species. Thus, DNA methylation of the aromatase promoter may be an essential component of the long-sought-after mechanism connecting environmental temperature and sex ratios in vertebrate species with temperature-dependent sex determination.


Assuntos
Aromatase/genética , Bass/genética , Metilação de DNA/genética , Gônadas/enzimologia , Processos de Determinação Sexual/genética , Razão de Masculinidade , Animais , Aromatase/metabolismo , Sequência de Bases , Bass/fisiologia , Ilhas de CpG/genética , Europa (Continente) , Feminino , Expressão Gênica , Masculino , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Temperatura
12.
MethodsX ; 13: 102973, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39398536

RESUMO

Microplastic pollution poses a significant environmental threat due to its persistence, widespread distribution, and inherent toxic potential. Despite the increasing number of publications in this field, a standardized protocol for the laboratory intake of microplastics by Daphnia magna has yet to be established. In this study, we introduce a verified protocol designed to facilitate the ingestion of microplastic particles (MPs) by D. magna, ranging in size from 5-55 µm. This protocol can be further applied to evaluate the toxicity of MPs on D. magna, a crucial organism model in ecotoxicology. Furthermore, this protocol can be used to assess toxicity of MPs in other aquatic species, such as fish, by using daphnids as a vehicle for ensuring the ingestion of these particles. Consequently, this protocol can be applied to study also one of the most pressing concerns regarding exposure to MPs, the transfer of MPs through different trophic levels, which has a great potential for ecotoxicological studies.•The influence of MPs concentration, duration and exposure dynamics and D. magna age/size in MPs intake were tested.•We have determined the optimal conditions for promoting microplastic ingestion by D. magna.

13.
J Hazard Mater ; 465: 133377, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38237439

RESUMO

The regeneration of wastewater has been recognized as an effective strategy to counter water scarcity. Nonetheless, Wastewater Treatment Plant (WWTP) effluents still contain a wide range of contaminants of emerging concern (CECs) even after water depuration. Filtration through Soil Aquifer Treatment (SAT) systems has proven efficient for CECs removal although the attenuation of their associated biological effects still remains poorly understood. To evaluate this, three pilot SAT systems were monitored, two of them enhanced with different reactive barriers. SATs were fed with secondary effluents during two consecutive campaigns. Fifteen water samples were collected from the WWTP effluent, below the barriers and 15 m into the aquifer. The potential attenuation of effluent-associated biological effects by SATs was evaluated through toxicogenomic bioassays using zebrafish eleutheroembryos and human hepatic cells. Transcriptomic analyses revealed a wide range of toxic activities exerted by the WWTP effluents that were reduced by more than 70% by SAT. Similar results were observed when HepG2 hepatic cells were tested for cytotoxic and dioxin-like responses. Toxicity reduction appeared partially determined by the barrier composition and/or SAT managing and correlated with CECs removal. SAT appears as a promising approach to efficiently reduce effluent-associated toxicity contributing to environmental and human health preservation.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Purificação da Água , Animais , Humanos , Peixe-Zebra , Solo , Poluentes Químicos da Água/análise , Água/análise , Monitoramento Ambiental , Eliminação de Resíduos Líquidos
14.
Reprod Biol Endocrinol ; 11: 14, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23442383

RESUMO

BACKGROUND: Amphibian declines are now recognized globally. It is also well known that many anurans do not reproduce easily in captivity, especially when held over long periods, or if they require hibernation before breeding. A simple method to induce spawning and subsequent development of large numbers of healthy tadpoles is therefore required to meet research and conservation goals. METHODS: The method is based on simultaneous injection of both female and male leopard frogs, Lithobates pipiens (formerly called Rana pipiens) with a cocktail of a gonadotropin-releasing hormone agonist (GnRH-A) and a dopamine antagonist. We call this the AMPHIPLEX method, which is derived from the combination of the words amphibian and amplexus. Following injection, the animals are thereby induced, and perform amplexus and natural fertilization under captive conditions. RESULTS: We tested combinations of a GnRH agonist with 2 different dopamine antagonists in L. pipiens in the breeding season. The combination of des-Gly(10), D-Ala(6), Pro-NHEt(9)-GnRH (0.4 micrograms/g body weight; GnRH-A) with metoclopramide hydrochloride (10 micrograms/g body weight; MET) or domperidone (DOM) were equally effective, producing 89% and 88% successful spawning, respectively. This yielded more than 44,000 eggs for the 16/18 females that ovulated in the GnRH-A+MET group, and more than 39,000 eggs for the 15/17 females that ovulated in the GnRH-A+DOM group. We further tested the GnRH-A+MET in frogs collected in the wild in late autumn and hibernated for a short period under laboratory conditions, and report a low spawning success (43%). However, GnRH-A priming 24 hours prior to injections of the GnRH-A+MET cocktail in animals hibernated for 5-6 weeks produced out-of-season spawning (89%) and fertilization (85%) comparable to those we observed for in-season spawning. Assessment of age and weight at metamorphosis indicated that L. pipiens tadpoles resulting from out-of-season spawning grew normally and metamorphosed successfully. CONCLUSION: We provide evidence for successful captive breeding of the leopard frog, L. pipiens. This simple protocol can be used to obtain large numbers of eggs in a predictable, timed manner.


Assuntos
Cruzamento/métodos , Rana pipiens/fisiologia , Reprodução/fisiologia , Estações do Ano , Animais , Antagonistas de Dopamina/farmacologia , Feminino , Hormônio Liberador de Gonadotropina/agonistas , Hormônio Liberador de Gonadotropina/farmacologia , Masculino , Reprodução/efeitos dos fármacos , Resultado do Tratamento
15.
Sci Total Environ ; 815: 151973, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34843769

RESUMO

The spread of antibiotic resistance genes (ARG) into agricultural soils, products, and foods severely limits the use of organic fertilizers in agriculture. In order to help designing agricultural practices that minimize the spread of ARG, we fertilized, sown, and harvested lettuces and radish plants in experimental land plots for two consecutive agricultural cycles using four types of fertilizers: mineral fertilization, sewage sludge, pig slurry, or composted organic fraction of municipal solid waste. The analysis of the relative abundances of more than 200,000 ASV (Amplicon Sequence Variants) identified a small, but significant overlap (<10%) between soil's and fertilizer microbiomes. Clinically relevant ARG were found in higher loads (up to 100 fold) in fertilized soils than in the initial soil, particularly in those treated with organic fertilizers, and their loads grossly correlated to the amount of antibiotic residues found in the corresponding fertilizer. Similarly, low, but measurable ARG loads were found in lettuce (tetM, sul1) and radish (sul1), corresponding the lowest values to samples collected from minerally fertilized fields. Comparison of soil samples collected along the total period of the experiment indicated a relatively year-round stability of soil microbiomes in amended soils, whereas ARG loads appeared as unstable and transient. The results indicate that ARG loads in soils and foodstuffs were likely linked to the contribution of bacteria from organic fertilizer to the soil microbiomes, suggesting that an adequate waste management and good pharmacological and veterinarian practices may significantly reduce the presence of these ARGs in agricultural soils and plant products.


Assuntos
Fertilizantes , Solo , Agricultura , Animais , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Fertilizantes/análise , Esterco , Microbiologia do Solo , Suínos
16.
Artigo em Inglês | MEDLINE | ID: mdl-33126028

RESUMO

The unprecedented access to annotated genomes now facilitates the investigation of the molecular basis of epigenetic phenomena in phenotypically diverse animals. In this critical review, we describe the roles of molecular epigenetic mechanisms in regulating mitotically and meiotically stable spatiotemporal gene expression, phenomena that provide the molecular foundation for the intra-, inter-, and trans-generational emergence of physiological phenotypes. By focusing principally on emerging comparative epigenetic roles of DNA-level and transcriptome-level epigenetic mark dynamics in the emergence of phenotypes, we highlight the relationship between evolutionary conservation and innovation of specific epigenetic pathways, and their interplay as a priority for future study. This comparative approach is expected to significantly advance our understanding of epigenetic phenomena, as animals show a diverse array of strategies to epigenetically modify physiological responses. Additionally, we review recent technological advances in the field of molecular epigenetics (single-cell epigenomics and transcriptomics and editing of epigenetic marks) in order to (1) investigate environmental and endogenous factor dependent epigenetic mark dynamics in an integrative manner; (2) functionally test the contribution of specific epigenetic marks for animal phenotypes via genome and transcript-editing tools. Finally, we describe advantages and limitations of emerging animal models, which under the Krogh principle, may be particularly useful in the advancement of comparative epigenomics and its potential translational applications in animal science, ecotoxicology, ecophysiology, climate change science and wild-life conservation, as well as organismal health.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Metilação de DNA , Epigênese Genética , Variação Genética , Genoma , Animais , Fenótipo , Transcriptoma
17.
J Hazard Mater ; 398: 122881, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32474318

RESUMO

Exposure to the antifouling tributyltin (TBT) has been related to imposex in mollusks and to obesogenicity, adipogenesis and masculinization in fish. To understand the underlying molecular mechanisms, we evaluated dose-response effects of TBT (1.7-56 nM) in zebrafish eleutheroembryos transcriptome exposed from 2 to 5 days post-fertilization. RNA-sequencing analysis identified 3238 differentially expressed transcripts in eleutheroembryos exposed to TBT. Benchmark dose analyses (BMD) showed that the point of departure (PoD) for transcriptomic effects (9.28 nM) was similar to the metabolomic PoD (11.5 nM) and about one order of magnitude lower than the morphometric PoD (67.9 nM) or the median lethal concentration (LC50: 93.6 nM). Functional analysis of BMD transcriptomic data identified steroid metabolism and cholesterol and vitamin D3 biosynthesis as the most sensitive pathways to TBT (<50% PoD). Conversely, transcripts related to general stress and DNA damage became affected only at doses above the PoD. Therefore, our results indicate that transcriptomes can act as early molecular indicators of pollutant exposure, and illustrates their usefulness for the mechanistic identification of the initial toxic events. As the estimated molecular PoDs are close to environmental levels, we concluded that TBT may represent a substantial risk in some natural environments.


Assuntos
Compostos de Trialquitina , Poluentes Químicos da Água , Animais , Benchmarking , Transcriptoma , Compostos de Trialquitina/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/genética
18.
Mol Cell Endocrinol ; 513: 110861, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32450283

RESUMO

Concern over global amphibian declines and possible links to agrochemical use has led to research on the endocrine disrupting actions of agrochemicals, such as fertilizers, fungicides, insecticides, acaricides, herbicides, metals, and mixtures. Amphibians, like other species, have to partition resources for body maintenance, growth, and reproduction. Recent studies suggest that metabolic impairments induced by endocrine disrupting chemicals, and more particularly agrichemicals, may disrupt physiological constraints associated with these limited resources and could cause deleterious effects on growth and reproduction. Metabolic disruption has hardly been considered for amphibian species following agrichemical exposure. As for metamorphosis, the key thyroid hormone-dependent developmental phase for amphibians, it can either be advanced or delayed by agrichemicals with consequences for juvenile and adult health and survival. While numerous agrichemicals affect anuran sexual development, including sex reversal and intersex in several species, little is known about the mechanisms involved in dysregulation of the sex differentiation processes. Adult anurans display stereotypical male mating calls and female phonotaxis responses leading to successful amplexus and spawning. These are hormone-dependent behaviours at the foundation of reproductive success. Therefore, male vocalizations are highly ecologically-relevant and may be a non-invasive low-cost method for the assessment of endocrine disruption at the population level. While it is clear that agrochemicals disrupt multiple endocrine systems in frogs, very little has been uncovered regarding the molecular and cellular mechanisms at the basis of these actions. This is surprising, given the importance of the frog models to our deep understanding of developmental biology and thyroid hormone action to understand human health. Several agrochemicals were found to have multiple endocrine effects at once (e.g., targeting both the thyroid and gonadal axes); therefore, the assessment of agrochemicals that alter cross-talk between hormonal systems must be further addressed. Given the diversity of life-history traits in Anura, Caudata, and the Gymnophiona, it is essential that studies on endocrine disruption expand to include the lesser known taxa. Research under ecologically-relevant conditions will also be paramount. Closer collaboration between molecular and cellular endocrinologists and ecotoxicologists and ecologists is thus recommended.


Assuntos
Agroquímicos/farmacologia , Anfíbios/fisiologia , Disruptores Endócrinos/farmacologia , Sistema Endócrino/efeitos dos fármacos , Animais , Sistema Endócrino/fisiologia , Feminino , Masculino , Metamorfose Biológica/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Diferenciação Sexual/efeitos dos fármacos , Desenvolvimento Sexual/efeitos dos fármacos
19.
Chemosphere ; 256: 127080, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32450349

RESUMO

Bisphenol A (BPA) is an estrogenic contaminant linked to metabolic disruption. Developmental BPA exposure is of particular concern, as organizational effects may irreversibly disrupt metabolism at later life-stages. While BPA exposures in adult fish elicit metabolic perturbations similar to effects described in rodents, the metabolic effects of developmental BPA exposure in juvenile fish remain largely unknown. Following embryonic zebrafish exposure to BPA (0.1, 1 and 4 mg/L) and EE2 (10 ng/L) from 2 to 5 dpf, we assessed the metabolic phenotype in larvae (4-6 dpf) and juveniles (43-49 dpf) which had been divided into regular-fed and overfed groups at 29 dpf. Developmental BPA exposure in larvae dose-dependently reduced food-intake and locomotion and increased energy expenditure. Juveniles (29 dpf) exhibited a transient increase in body weight after developmental BPA exposure and persistent diet-dependent locomotion changes (43-49 dpf). At the molecular level, glucose and lipid metabolism-related transcript abundance clearly separated BPA exposed fish from controls and EE2 exposed fish at the larval stage, in juveniles on a regular diet and, to a lesser extent, in overfed juveniles. In general, the metabolic endpoints affected by BPA exposure were not mimicked by EE2 treatment. We conclude that developmental BPA exposure elicits acute metabolic effects in zebrafish larvae and fewer transient and persistent effects in juveniles and that these metabolic effects are largely independent of BPA's estrogenicity.


Assuntos
Compostos Benzidrílicos/toxicidade , Metabolismo/efeitos dos fármacos , Fenóis/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Larva/efeitos dos fármacos , Peixe-Zebra/embriologia
20.
Chemosphere ; 246: 125704, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31887487

RESUMO

Bisphenol A (BPA; 4,4'-(propane-2,2-diyl)diphenol) has been shown to act as an obesogen and to disrupt lipid metabolism in zebrafish eleutheroembryos (ZE). To characterize the consequences of this disruption, we performed a detailed lipidomic study using ZE exposed to different BPA concentrations (0, 4, 6 and 8 mg/L of BPA) from day 2 to up to day 6 post fertilization (dpf). Total lipids at 4, 5 and 6 dpf were extracted by Folch method and analyzed by high-performance thin layer chromatography (HPTLC) as wide-range preliminary screening. Selected conditions (0 and 6 mg/L of BPA) were used to obtain a high-quality lipid profile using ultra high-performance liquid chromatography/time-of-flight mass spectrometry (UHPLC-TOFMS). BPA exposed ZE exhibited increased amounts of triglycerides (TG), diglycerides (DG), phosphatidylcholines (PC) and phosphatidylinositols (PI), regarding the control group. Analysis of time- and BPA exposure-related patterns of specific lipid species showed a clear influence of unsaturation degree (mostly in DG and PC) and/or fatty acid chain length (mostly in TG and PC derivatives) on their response to the presence of BPA. A decreased yolk-sac and energy consumption in exposed individuals appeared as the main reason for the observed BPA-driven effects. Integration of these results with previous morphological, biochemical, transcriptomic, metabolomic and behavioral data suggests a disruption of different signalling pathways by BPA that starts at very low BPA concentrations, whose effects propagate across different organization levels, and that cannot be only explained by the relatively weak estrogenic effect of BPA.


Assuntos
Compostos Benzidrílicos/toxicidade , Fenóis/toxicidade , Poluentes Químicos da Água/toxicidade , Saco Vitelino/efeitos dos fármacos , Animais , Compostos Benzidrílicos/análise , Cromatografia Líquida de Alta Pressão , Estrogênios/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos , Fenóis/análise , Reprodução , Poluentes Químicos da Água/análise , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA