Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38251159

RESUMO

As a new trend in plasma surface engineering, plasma conditions that allow more-defined chemical reactions at the surface are being increasingly investigated. This is achieved by avoiding high energy deposition via ion bombardment during direct plasma exposure (DPE) causing destruction, densification, and a broad variety of chemical reactions. In this work, a novel approach is introduced by placing a polymer mesh with large open area close to the plasma-sheath boundary above the plasma-treated sample, thus enabling near-plasma chemistry (NPC). The mesh size effectively extracts ions, while reactive neutrals, electrons, and photons still reach the sample surface. The beneficial impact of this on the plasma activation of poly (tetrafluoroethylene) (PTFE) to enhance wettability and on the plasma polymerization of siloxanes, combined with the etching of residual hydrocarbons to obtain highly porous SiOx coatings at low temperatures, is discussed. Characterization of the treated samples indicates a predominant chemical modification yielding enhanced film structures and durability.

2.
ACS Sustain Chem Eng ; 11(9): 3621-3632, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36911874

RESUMO

Plasma-catalysis has been proposed as a potential alternative for the synthesis of ammonia. Studies in this area focus on the reaction mechanisms and the apparent synergy existing between processes occurring in the plasma phase and on the surface of the catalytic material. In the present study, we approach this problem using a parallel-plate packed-bed reactor with the gap between the electrodes filled with pellets of lead zirconate titanate (PZT), with this ferroelectric material modified with a coating layer of alumina (i.e., Al2O3/PZT) and the same alumina layer incorporating ruthenium nanoparticles (i.e., Ru-Al2O3/PZT). At ambient temperature, the electrical behavior of the ferroelectric packed-bed reactor differed for these three types of barriers, with the plasma current reaching a maximum when using Ru-Al2O3/PZT pellets. A systematic analysis of the reaction yield and energy efficiency for the ammonia synthesis reaction, at ambient temperature and at 190 °C and various electrical operating conditions, has demonstrated that the yield and the energy efficiency for the ammonia synthesis do not significantly improve when including ruthenium particles, even at temperatures at which an incipient catalytic activity could be inferred. Besides disregarding a net plasma-catalysis effect, reaction results highlight the positive role of the ferroelectric PZT as moderator of the discharge, that of Ru particles as plasma hot points, and that of the Al2O3 coating as a plasma cooling dielectric layer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA