Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Brain ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829801

RESUMO

The prevalence of many pain conditions often differs between sexes. In addition to such quantitative distinctions, sexual dimorphism may also be qualitative reflecting differences in mechanisms that promote pain in men and women. A major factor that influences the likelihood of pain perception is the threshold for activation of nociceptors. Peripheral nociceptor sensitization has been demonstrated to be clinically relevant in many pain conditions. Whether peripheral nociceptor sensitization can occur in a sexually dimorphic fashion, however, has not been extensively studied. To address this fundamental knowledge gap, we used patch clamp electrophysiology to evaluate the excitability of dorsal root ganglion neurones from male or female rodents, non-human primates, and humans following exposure to putative sensitizing agents. Previous studies from our laboratory, and others, have shown that prolactin promotes female-selective pain responses in rodents. Consistent with these observations, dorsal root ganglion neurones from female, but not male, mice were selectively sensitized by exposure to prolactin. The sensitizing action of prolactin was also confirmed in dorsal root ganglion neurones from a female macaque monkey. Critically, neurones recovered from female, but not male, human donors were also selectively sensitized by prolactin. In the course of studies of sleep and pain, we unexpectedly observed that an orexin antagonist could normalize pain responses in male animals. We found that orexin B produced sensitization of male, but not female, mouse, macaque, and human dorsal root ganglion neurones. Consistent with functional responses, increased prolactin receptor and orexin receptor 2 expression was observed in female and male mouse dorsal root ganglia, respectively. Immunohistochemical interrogation of cultured human sensory neurones and whole dorsal root ganglia also suggested increased prolactin receptor expression in females and orexin receptor 2 expression in males. These data reveal a functional double dissociation of nociceptor sensitization by sex, which is conserved across species and is likely directly relevant to human pain conditions. To our knowledge, this is the first demonstration of functional sexual dimorphism in human sensory neurones. Patient sex is currently not a common consideration for the choice of pain therapy. Precision medicine, based on patient sex could improve therapeutic outcomes by selectively targeting mechanisms promoting pain in women or men. Additional implications of these findings are that the design of clinical trials for pain therapies should consider the proportions of male or female patients enrolled. Lastly, re-examination of selected past failed clinical trials with subgroup analysis by sex may be warranted.

2.
Anesthesiology ; 140(2): 272-283, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37725756

RESUMO

BACKGROUND: The efficiency of descending pain modulation, commonly assessed with the conditioned pain modulation procedure, is diminished in patients with chronic pain. The authors hypothesized that the efficiency of pain modulation is controlled by cortical opioid circuits. METHODS: This study evaluated the effects of µ opioid receptor activation in the anterior cingulate cortex on descending control of nociception, a preclinical correlate of conditioned pain modulation, in male Sprague-Dawley rats with spinal nerve ligation-induced chronic pain or in sham-operated controls. Additionally, the study explored the consequences of respective activation or inhibition of κ opioid receptor in the anterior cingulate cortex of naive rats or animals with neuropathic pain. Descending control of nociception was measured as the hind paw withdrawal response to noxious pressure (test stimulus) in the absence or presence of capsaicin injection in the forepaw (conditioning stimulus). RESULTS: Descending control of nociception was diminished in the ipsilateral, but not contralateral, hind paw of rats with spinal nerve ligation. Bilateral administration of morphine in the anterior cingulate cortex had no effect in shams but restored diminished descending control of nociception without altering hypersensitivity in rats with neuropathic pain. Bilateral anterior cingulate cortex microinjection of κ opioid receptor antagonists, including nor-binaltorphimine and navacaprant, also re-established descending control of nociception in rats with neuropathic pain without altering hypersensitivity and with no effect in shams. Conversely, bilateral injection of a κ opioid receptor agonist, U69,593, in the anterior cingulate cortex of naive rats inhibited descending control of nociception without altering withdrawal thresholds. CONCLUSIONS: Anterior cingulate cortex κ opioid receptor activation therefore diminishes descending control of nociception both in naive animals and as an adaptive response to chronic pain, likely by enhancing net descending facilitation. Descending control of nociception can be restored by activation of µ opioid receptors in the anterior cingulate cortex, but also by κ opioid receptor antagonists, providing a nonaddictive alternative to opioid analgesics. Navacaprant is now in advanced clinical trials.


Assuntos
Dor Crônica , Neuralgia , Humanos , Ratos , Masculino , Animais , Receptores Opioides kappa/metabolismo , Ratos Sprague-Dawley , Antagonistas de Entorpecentes/farmacologia , Giro do Cíngulo , Nociceptividade , Medição da Dor/métodos , Analgésicos Opioides/farmacologia
3.
Cephalalgia ; 44(3): 3331024241238153, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38477313

RESUMO

BACKGROUND: Women show increased prevalence and severity of migraine compared to men. Whether small molecule calcitonin gene-related peptide receptor (CGRP-R) antagonists (i.e., gepants) and monoclonal antibodies targeting either the CGRP-R or the CGRP peptide might show sexually dimorphic outcomes for acute and preventive therapy has not been established. METHODS: We conducted a subpopulation analysis of available published data from FDA reviews to evaluate potential sex differences in the response rates of ubrogepant, rimegepant and zavegepant for acute migraine therapy. Available data from FDA reviews of erenumab, fremanezumab, galcanezumab and eptinezumab, approved CGRP-R and CGRP monoclonal antibodies and of atogepant were examined for prevention outcomes based on patient sex. Preventive outcomes were analyzed separately for patients with episodic migraine and chronic migraine. RESULTS: In women, the three approved gepants produced statistically significant drug effects regardless of dose tested on the FDA mandated co-primary endpoints, the proportion of patients achieving two-hour pain-freedom and the proportion of patients free of their most bothersome symptom at two hours post-dose. In women, the average placebo-subtracted two-hour pain-freedom proportion was 9.5% (CI: 7.4 to 11.6) and the average numbers needed to treat was 11. The free from most bothersome symptom at two hours outcomes were also significant in women. The gepant drugs did not reach statistically significant effects on the two-hour pain-freedom endpoint in the men, with an average drug effect of 2.8% (CI: -2.5 to 8.2) and an average number needed to treat of 36. For freedom from most bothersome symptom at two hours post-dose endpoint, differences were not significant in male patients. The treatment effect in each of the gepant studies was always numerically greater in women than in men. In evaluation of prevention outcomes with the antibodies or atogepant using the change from the specified primary endpoint (e.g., monthly migraine days), the observed treatment effect for episodic migraine patients almost always favored drug over placebo in both women and men. For chronic migraine patients the treatment effects of antibodies were similar in men and women and always favored the drug treated group.Conclusion/Interpretation: Small molecule CGRP-R antagonists are effective in acute migraine therapy in women but available data do not demonstrate effectiveness in men. CGRP-targeting therapies are effective for migraine prevention in both male and female episodic migraine patients but possible sex differences remain uncertain. In male and female chronic migraine patients, CGRP/CGRP-R antibodies were similarly effective. The data highlight possible differential effects of CGRP targeted therapies in different patient populations and the need for increased understanding of CGRP neurobiology in men and women.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Transtornos de Enxaqueca , Piperidinas , Piridinas , Pirróis , Compostos de Espiro , Feminino , Humanos , Masculino , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/uso terapêutico , Transtornos de Enxaqueca/tratamento farmacológico , Anticorpos Monoclonais/uso terapêutico , Dor/tratamento farmacológico
4.
Brain ; 146(3): 1186-1199, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35485490

RESUMO

Increased vigilance in settings of potential threats or in states of vulnerability related to pain is important for survival. Pain disrupts sleep and conversely, sleep disruption enhances pain, but the underlying mechanisms remain unknown. Chronic pain engages brain stress circuits and increases secretion of dynorphin, an endogenous ligand of the kappa opioid receptor (KOR). We therefore hypothesized that hypothalamic dynorphin/KOR signalling may be a previously unknown mechanism that is recruited in pathological conditions requiring increased vigilance. We investigated the role of KOR in wakefulness, non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep in freely moving naïve mice and in mice with neuropathic pain induced by partial sciatic nerve ligation using EEG/EMG recordings. Systemic continuous administration of U69,593, a KOR agonist, over 5 days through an osmotic minipump decreased the amount of NREM and REM sleep and increased sleep fragmentation in naïve mice throughout the light-dark sleep cycle. We used KORcre mice to selectively express a Gi-coupled designer receptor activated by designer drugs (Gi-DREADD) in KORcre neurons of the hypothalamic paraventricular nucleus, a key node of the hypothalamic-pituitary-adrenal stress response. Sustained activation of Gi-DREADD with clozapine-N-oxide delivered in drinking water over 4 days, disrupted sleep in these mice in a similar way as systemic U69,593. Mice with chronic neuropathic pain also showed disrupted NREM and total sleep that was normalized by systemic administration of two structurally different KOR antagonists, norbinaltorphimine and NMRA-140, currently in phase II clinical development, or by CRISPR/Cas9 editing of paraventricular nucleus KOR, consistent with endogenous KOR activation disrupting sleep in chronic pain. Unexpectedly, REM sleep was diminished by either systemic KOR antagonist or by CRISPR/Cas9 editing of paraventricular nucleus KOR in sham-operated mice. Our findings reveal previously unknown physiological and pathophysiological roles of dynorphin/KOR in eliciting arousal. Physiologically, dynorphin/KOR signalling affects transitions between sleep stages that promote REM sleep. Furthermore, while KOR antagonists do not promote somnolence in the absence of pain, they normalized disrupted sleep in chronic pain, revealing a pathophysiological role of KOR signalling that is selectively recruited to promote vigilance, increasing chances of survival. Notably, while this mechanism is likely beneficial in the short-term, disruption of the homeostatic need for sleep over longer periods may become maladaptive resulting in sustained pain chronicity. A novel approach for treatment of chronic pain may thus result from normalization of chronic pain-related sleep disruption by KOR antagonism.


Assuntos
Dor Crônica , Neuralgia , Camundongos , Animais , Receptores Opioides kappa , Dinorfinas , Vigília , Antagonistas de Entorpecentes/farmacologia
5.
J Headache Pain ; 25(1): 63, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658853

RESUMO

Sexual dimorphism has been revealed for many neurological disorders including chronic pain. Prelicinal studies and post-mortem analyses from male and female human donors reveal sexual dimorphism of nociceptors at transcript, protein and functional levels suggesting different mechanisms that may promote pain in men and women. Migraine is a common female-prevalent neurological disorder that is characterized by painful and debilitating headache. Prolactin is a neurohormone that circulates at higher levels in females and that has been implicated clinically in migraine. Prolactin sensitizes sensory neurons from female mice, non-human primates and humans revealing a female-selective pain mechanism that is conserved evolutionarily and likely translationally relevant. Prolactin produces female-selective migraine-like pain behaviors in rodents and enhances the release of calcitonin gene-related peptide (CGRP), a neurotransmitter that is causal in promoting migraine in many patients. CGRP, like prolactin, produces female-selective migraine-like pain behaviors. Consistent with these observations, publicly available clinical data indicate that small molecule CGRP-receptor antagonists are preferentially effective in treatment of acute migraine therapy in women. Collectively, these observations support the conclusion of qualitative sex differences promoting migraine pain providing the opportunity to tailor therapies based on patient sex for improved outcomes. Additionally, patient sex should be considered in design of clinical trials for migraine as well as for pain and reassessment of past trials may be warranted.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Transtornos de Enxaqueca , Prolactina , Caracteres Sexuais , Transtornos de Enxaqueca/fisiopatologia , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/metabolismo , Humanos , Feminino , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Prolactina/metabolismo , Masculino
6.
Cephalalgia ; 43(11): 3331024231217469, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-38016977

RESUMO

BACKGROUND: Post-traumatic headache is very common after a mild traumatic brain injury. Post-traumatic headache may persist for months to years after an injury in a substantial proportion of people. The pathophysiology underlying post-traumatic headache remains unknown but is likely distinct from other headache disorders. Identification of brain areas activated in acute and persistent phases of post-traumatic headache can provide insights into the underlying circuits mediating headache pain. We used an animal model of mild traumatic brain injury-induced post-traumatic headache and c-fos immunohistochemistry to identify brain regions with peak activity levels across the acute and persistent phases of post-traumatic headache. METHODS: Male and female C57BL/6 J mice were briefly anesthetized and subjected to a sham procedure or a weight drop closed-head mild traumatic brain injury . Cutaneous allodynia was assessed in the periorbital and hindpaw regions using von Frey filaments. Immunohistochemical c-fos based neural activity mapping was then performed on sections from whole brain across the development of post-traumatic headache (i.e. peak of the acute phase at 2 days post- mild traumatic brain injury), start of the persistent phase (i.e. >14 days post-mild traumatic brain injury) or after provocation with stress (bright light). Brain areas with consistent and peak levels of c-fos expression across mild traumatic brain injury induced post-traumatic headache were identified and included for further analysis. RESULTS: Following mild traumatic brain injury, periorbital and hindpaw allodynia was observed in both male and female mice. This allodynia was transient and subsided within the first 14 days post-mild traumatic brain injury and is representative of acute post-traumatic headache. After this acute post-traumatic headache phase, exposure of mild traumatic brain injury mice to a bright light stress reinstated periorbital and hindpaw allodynia for several hours - indicative of the development of persistent post-traumatic headache. Acute post-traumatic headache was coincident with an increase in neuronal c-fos labeling in the spinal nucleus of the trigeminal caudalis, primary somatosensory cortex, and the nucleus accumbens. Neuronal activation returned to baseline levels by the persistent post-traumatic headache phase in the spinal nucleus of the trigeminal caudalis and primary somatosensory cortex but remained elevated in the nucleus accumbens. In the persistent post-traumatic headache phase, coincident with allodynia observed following bright light stress, we observed bright light stress-induced c-fos neural activation in the spinal nucleus of the trigeminal caudalis, primary somatosensory cortex, and nucleus accumbens. CONCLUSION: Examination of mild traumatic brain injury-induced changes in peak c-fos expression revealed brain regions with significantly increased neural activity across the acute and persistent phases of post-traumatic headache. Our findings suggest mild traumatic brain injury-induced post-traumatic headache produces neural activation along pain relevant pathways at time-points matching post-traumatic headache-like pain behaviors. These observations suggest that the spinal nucleus of the trigeminal caudalis, primary somatosensory cortex, and nucleus accumbens may contribute to both the induction and maintenance of post-traumatic headache.


Assuntos
Concussão Encefálica , Cefaleia Pós-Traumática , Humanos , Camundongos , Masculino , Feminino , Animais , Cefaleia Pós-Traumática/etiologia , Hiperalgesia/metabolismo , Camundongos Endogâmicos C57BL , Cefaleia/metabolismo , Encéfalo , Dor
7.
Brain ; 145(8): 2894-2909, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-35325034

RESUMO

Migraine headache results from activation of meningeal nociceptors, however, the hypothalamus is activated many hours before the emergence of pain. How hypothalamic neural mechanisms may influence trigeminal nociceptor function remains unknown. Stress is a common migraine trigger that engages hypothalamic dynorphin/kappa opioid receptor (KOR) signalling and increases circulating prolactin. Prolactin acts at both long and short prolactin receptor isoforms that are expressed in trigeminal afferents. Following downregulation of the prolactin receptor long isoform, prolactin signalling at the prolactin receptor short isoform sensitizes nociceptors selectively in females. We hypothesized that stress may activate the kappa opioid receptor on tuberoinfundibular dopaminergic neurons to increase circulating prolactin leading to female-selective sensitization of trigeminal nociceptors through dysregulation of prolactin receptor isoforms. A mouse two-hit hyperalgesic priming model of migraine was used. Repeated restraint stress promoted vulnerability (i.e. first-hit priming) to a subsequent subthreshold (i.e. second-hit) stimulus from inhalational umbellulone, a TRPA1 agonist. Periorbital cutaneous allodynia served as a surrogate of migraine-like pain. Female and male KORCre; R26lsl-Sun1-GFP mice showed a high percentage of KORCre labelled neurons co-localized in tyrosine hydroxylase-positive cells in the hypothalamic arcuate nucleus. Restraint stress increased circulating prolactin to a greater degree in females. Stress-primed, but not control, mice of both sexes developed periorbital allodynia following inhalational umbellulone. Gi-DREADD activation (i.e. inhibition through Gi-coupled signalling) in KORCre neurons in the arcuate nucleus also increased circulating prolactin and repeated chemogenetic manipulation of these neurons primed mice of both sexes to umbellulone. Clustered regularly interspaced short palindromic repeats-Cas9 deletion of the arcuate nucleus KOR prevented restraint stress-induced prolactin release in female mice and priming from repeated stress episodes in both sexes. Inhibition of circulating prolactin occurred with systemic cabergoline, a dopamine D2 receptor agonist, blocked priming selectively in females. Repeated restraint stress downregulated the prolactin receptor long isoform in the trigeminal ganglia of female mice. Deletion of prolactin receptor in trigeminal ganglia by nasal clustered regularly interspaced short palindromic repeats-Cas9 targeting both prolactin receptor isoforms prevented stress-induced priming in female mice. Stress-induced activation of hypothalamic KOR increases circulating prolactin resulting in trigeminal downregulation of prolactin receptor long and pain responses to a normally innocuous TRPA1 stimulus. These are the first data that provide a mechanistic link between stress-induced hypothalamic activation and the trigeminal nociceptor effectors that produce trigeminal sensitization and migraine-like pain. This sexually dimorphic mechanism may help to explain female prevalence of migraine. KOR antagonists, currently in phase II clinical trials, may be useful as migraine preventives in both sexes, while dopamine agonists and prolactin/ prolactin receptor antibodies may improve therapy for migraine, and other stress-related neurological disorders, in females.


Assuntos
Transtornos de Enxaqueca , Nociceptores , Animais , Neurônios Dopaminérgicos , Feminino , Hiperalgesia , Hipotálamo , Masculino , Camundongos , Dor , Prolactina , Receptores Opioides kappa , Receptores da Prolactina
8.
Cephalalgia ; 42(3): 197-208, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34510920

RESUMO

OBJECTIVE: Determination of possible sex differences in mechanisms promoting migraine progression and the contribution of prolactin and the prolactin long (PRLR-L) and short (PRLR-S) receptor isoforms. BACKGROUND: The majority of patients with chronic migraine and medication overuse headache are female. Prolactin is present at higher levels in women and increases migraine. Prolactin signaling at the PRLR-S selectively sensitizes nociceptors in female rodents, while expression of the PRLR-L is protective. METHODS: Medication overuse headache was modeled by repeated sumatriptan administration in male and female mice. Periorbital and hindpaw cutaneous allodynia served as a surrogate of migraine-like pain. PRLR-L and PRLR-S isoforms were measured in the trigeminal ganglion with western blotting. Possible co-localization of PRLR with serotonin 5HT1B and 5HT1D receptors was determined with RNAscope. Cabergoline, a dopamine receptor agonist that inhibits circulating prolactin, was co-administered with sumatriptan. Nasal administration of CRISPR/Cas9 plasmid was used to edit expression of both PRLR isoforms. RESULTS: PRLR was co-localized with 5HT1B or 5HT1D receptors in the ophthalmic region of female trigeminal ganglion. A single injection of sumatriptan increased serum PRL levels in female mice. Repeated sumatriptan promoted cutaneous allodynia in both sexes but down-regulated trigeminal ganglion PRLR-L, without altering PRLR-S, only in females. Co-administration of sumatriptan with cabergoline prevented allodynia and down-regulation of PRLR-L only in females. CRISPR/Cas9 editing of both PRLR isoforms in the trigeminal ganglion prevented sumatriptan-induced periorbital allodynia in females. INTERPRETATION: We identified a sexually dimorphic mechanism of migraine chronification that involves down-regulation of PRLR-L and increased signaling of circulating prolactin at PRLR-S. These studies reveal a previously unrecognized neuroendocrine mechanism linking the hypothalamus to nociceptor sensitization that increases the risk of migraine pain in females and suggest opportunities for novel sex-specific therapies including gene editing through nasal delivery of CRISPR/Cas9 constructs.


Assuntos
Transtornos da Cefaleia Secundários , Transtornos de Enxaqueca , Animais , Feminino , Humanos , Hiperalgesia/induzido quimicamente , Masculino , Camundongos , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/metabolismo , Prolactina/efeitos adversos , Prolactina/metabolismo , Sumatriptana/farmacologia
9.
Cephalalgia ; 42(11-12): 1194-1206, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35546268

RESUMO

OBJECTIVE: Investigation of onabotulinumtoxinA in a murine model of acute and persistent post-traumatic headache. METHODS: Mild traumatic brain injury was induced with a weight drop method. Periorbital and hindpaw cutaneous allodynia were measured for 14 days. Mice were then exposed to bright light stress and allodynia was reassessed. OnabotulinumtoxinA (0.5 U) was injected subcutaneously over the cranial sutures at different post-injury time points. RESULTS: After milt traumatic brain injury, mice exhibited periorbital and hindpaw allodynia that lasted for approximately 14 days. Allodynia could be reinstated on days 14-67 by exposure to stress only in previously injured mice. OnabotulinumtoxinA administration at 2 h after mild traumatic brain injury fully blocked both transient acute and stress-induced allodynia up to day 67. When administered 72 h post-mild traumatic brain injury, onabotulinumtoxinA reversed acute allodynia, but only partially prevented stress-induced allodynia. OnabotulinumtoxinA administration at day 12, when initial allodynia was largely resolved, produced incomplete and transient prevention of stress-induced allodynia. The degree of acute allodynia correlated positively with subsequent stress-induced allodynia. CONCLUSION: Mild traumatic brain injury induced transient headache-like pain followed by long lasting sensitization and persistent vulnerability to a normally innocuous stress stimulus, respectively modeling acute and persistent post-traumatic headache.. Administration of onabotulinumtoxinA following the resolution of acute post-traumatic headache diminished persistent post-traumatic headache but the effects were transient, suggesting that underlying persistent mild traumatic brain injury-induced maladaptations were not reversed. In contrast, early onabotulinumtoxinA administration fully blocked both acute post-traumatic headache as well as the transition to persistent post-traumatic headache suggesting prevention of neural adaptations that promote vulnerability to headache-like pain. Additionally, the degree of acute post-traumatic headache was predictive of risk of persistent post-traumatic headache.


Assuntos
Toxinas Botulínicas Tipo A , Concussão Encefálica , Cefaleia Pós-Traumática , Cefaleia do Tipo Tensional , Animais , Toxinas Botulínicas Tipo A/uso terapêutico , Concussão Encefálica/tratamento farmacológico , Cefaleia/tratamento farmacológico , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Camundongos , Dor/tratamento farmacológico , Cefaleia Pós-Traumática/tratamento farmacológico , Cefaleia Pós-Traumática/etiologia , Cefaleia do Tipo Tensional/tratamento farmacológico
10.
Int J Mol Sci ; 23(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35055141

RESUMO

Chronic pain is associated with time-dependent structural and functional reorganization of the prefrontal cortex that may reflect adaptive pain compensatory and/or maladaptive pain-promoting mechanisms. However, the molecular underpinnings of these changes and whether there are time-dependent relationships to pain progression are not well characterized. In this study, we analyzed protein composition in the medial prefrontal cortex (mPFC) of rats at two timepoints after spinal nerve ligation (SNL) using two-dimensional gel electrophoresis (2D-ELFO) and liquid chromatography with tandem mass spectrometry (LC-MS/MS). SNL, but not sham-operated, rats developed persistent tactile allodynia and thermal hyperalgesia, confirming the presence of experimental neuropathic pain. Two weeks after SNL (early timepoint), we identified 11 proteins involved in signal transduction, protein transport, cell homeostasis, metabolism, and apoptosis, as well as heat-shock proteins and chaperones that were upregulated by more than 1.5-fold compared to the sham-operated rats. Interestingly, there were only four significantly altered proteins identified at 8 weeks after SNL (late timepoint). These findings demonstrate extensive time-dependent modifications of protein expression in the rat mPFC under a chronic neuropathic pain state that might underlie the evolution of chronic pain characterized by early pain-compensatory and later aberrant mechanisms.


Assuntos
Hiperalgesia/metabolismo , Neuralgia/metabolismo , Córtex Pré-Frontal/metabolismo , Proteômica/métodos , Nervos Espinhais/lesões , Animais , Cromatografia Líquida , Regulação da Expressão Gênica , Hiperalgesia/etiologia , Masculino , Neuralgia/etiologia , Medição da Dor , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Fatores de Tempo
11.
J Headache Pain ; 23(1): 126, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36175828

RESUMO

BACKGROUND: The migraine premonitory phase is characterized in part by increased thirst, urination and yawning. Imaging studies show that the hypothalamus is activated in the premonitory phase. Stress is a well know migraine initiation factor which was demonstrated to engage dynorphin/kappa opioid receptors (KOR) signaling in several brain regions, including the hypothalamus. This study proposes the exploration of the possible link between hypothalamic KOR and migraine premonitory symptoms in rodent models. METHODS: Rats were treated systemically with the KOR agonist U-69,593 followed by yawning and urination monitoring. Apomorphine, a dopamine D1/2 agonist, was used as a positive control for yawning behaviors. Urination and water consumption following systemic administration of U-69,593 was also assessed. To examine if KOR activation specifically in the hypothalamus can promote premonitory symptoms, AAV8-hSyn-DIO-hM4Di (Gi-DREADD)-mCherry viral vector was microinjected into the right arcuate nucleus (ARC) of female and male KORCRE or KORWT mice. Four weeks after the injection, clozapine N-oxide (CNO) was administered systemically followed by the assessment of urination, water consumption and tactile sensory response. RESULTS: Systemic administration of U-69,593 increased urination but did not produce yawning in rats. Systemic KOR agonist also increased urination in mice as well as water consumption. Cell specific Gi-DREADD activation (i.e., inhibition through Gi-coupled signaling) of KORCRE neurons in the ARC also increased water consumption and the total volume of urine in mice but did not affect tactile sensory responses. CONCLUSION: Our studies in rodents identified the KOR in a hypothalamic region as a mechanism that promotes behaviors consistent with clinically-observed premonitory symptoms of migraine, including increased thirst and urination but not yawning. Importantly, these behaviors occurred in the absence of pain responses, consistent with the emergence of the premonitory phase before the headache phase. Early intervention for preventive treatment even before the headache phase may be achievable by targeting the hypothalamic KOR.


Assuntos
Transtornos de Enxaqueca , Receptores Opioides kappa , Animais , Apomorfina , Dopamina , Dinorfinas , Feminino , Cefaleia , Hipotálamo , Masculino , Camundongos , Ratos
12.
Cell Mol Neurobiol ; 41(5): 949-960, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32107752

RESUMO

OBJECTIVE: Pharmacological evaluation of the mu-opioid receptor (MOR) agonist properties of NKTR-181 in rodent models. METHODS: Graded noxious stimulus intensities were used in rats to establish the antinociceptive potency and efficacy of NKTR-181 relative to morphine, fentanyl, and oxycodone. Characteristics of MOR agonist actions, as measured by antinociceptive tolerance and cross-tolerance, as well as opioid-induced hyperalgesia (OIH) and naloxone-precipitated withdrawal in NKTR-181- and morphine-dependent in mice, were compared. RESULTS: NKTR-181 showed dose- and time-related antinociception with similar maximal effects to morphine in the rat and mouse hot-water tail-flick test. No sex or species differences were observed in NKTR-181 or morphine antinociception. Rats treated with NKTR-181 and morphine exhibited decreases in both potency and maximal efficacy as nociceptive stimulus intensity was increased from a water temperature of 50 °C to 54 °C. Evaluation of antinociception at a high stimulus intensity revealed that oxycodone and fentanyl exhibited greater efficacy than either NKTR-181 or morphine. The relative potency difference between NKTR-181 and morphine across all tail-flick studies was determined to be 7.6-fold (90% confidence interval, 2.6, 21.5). The peak antinociceptive effect of NKTR-181 was delayed compared to that of the other opioids and cumulative drug effects were not observed. Repeated treatment with escalating, approximately equi-analgesic doses of NKTR-181 or morphine, produced antinociceptive tolerance and cross-tolerance. Under these pharmacological conditions, OIH and naloxone-precipitated physical dependence were similar for NKTR-181 and morphine. CONCLUSIONS: NKTR-181 had a slower onset, but similar efficacy, to morphine in the models studied supporting reduced abuse potential while maintaining analgesic effect in comparison with current opioids.


Assuntos
Analgésicos Opioides/farmacologia , Morfinanos/farmacologia , Morfina/farmacologia , Medição da Dor/efeitos dos fármacos , Receptores Opioides mu/agonistas , Animais , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Masculino , Camundongos , Medição da Dor/métodos , Ratos , Ratos Sprague-Dawley , Receptores Opioides mu/fisiologia , Roedores
13.
Cephalalgia ; 41(3): 305-317, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32985222

RESUMO

AIM: Development and characterization of a novel injury-free preclinical model of migraine-like pain allowing mechanistic assessment of both acute and preventive treatments. METHODS: A "two-hit" hyperalgesic priming strategy was used to induce vulnerability to a normally subthreshold challenge with umbellulone, a transient receptor potential ankyrin 1 (TRPA1) activator, in uninjured female and male C57BL/6 mice. Priming (i.e. the first hit) was induced by three consecutive daily episodes of restraint stress; repeated umbellulone was also evaluated for potential priming effects. Sixteen days after the first restraint stress, mice received inhalational umbellulone (i.e. the second hit) to elicit migraine-like pain. Medications currently used for acute or preventive migraine therapy including propranolol (a beta blocker) and sumatriptan (5HT1B/D agonist), as well as olcegepant, an experimental calcitonin gene related peptide (CGRP) receptor antagonist and nor-Binaltorphimine (nor-BNI), an experimental long-acting kappa opioid receptor (KOR) antagonist, were investigated for their efficacy to block priming and prevent or reverse umbellulone-induced allodynia in primed animals. To assess migraine-like pain, cutaneous allodynia was determined by responses to periorbital or hindpaw probing with von Frey filaments. RESULTS: Repeated restraint stress, but not umbellulone exposure, produced transient cutaneous allodynia that resolved within 16 d. Restraint stress produced long-lasting priming that persisted beyond 16 d, as demonstrated by reinstatement of cutaneous allodynia following inhalational umbellulone challenge. Pretreatment with propranolol or nor-BNI prior to restraint stress prevented both transient cutaneous allodynia and priming, demonstrated by a lack of umbellulone-induced cutaneous allodynia. Following establishment of restraint stress priming, olcegepant, but not propranolol or nor-BNI, prevented umbellulone-induced cutaneous allodynia. When administered 1 h after umbellulone, sumatriptan, but not olcegepant, reversed umbellulone-induced cutaneous allodynia in restraint stress-primed rats. CONCLUSION: We have developed a novel injury-free model with translational relevance that can be used to study mechanisms relevant to migraine-like pain and to evaluate novel acute or preventive treatments. Restraint stress priming induced a state of vulnerability to a subthreshold stimulus that has been referred to as "latent sensitization". The development of latent sensitization could be prevented by blockade of stress pathways with propranolol or with a kappa opioid receptor antagonist. Following establishment of latent sensitization, subthreshold stimulation with umbellulone reinstated cutaneous allodynia, likely from activation of meningeal TRPA1-expressing nociceptors. Accordingly, in restraint stress-primed animals, sumatriptan reversed umbellulone-induced cutaneous allodynia, supporting peripheral sites of action, while propranolol and nor-BNI were not effective. Surprisingly, olcegepant was effective in mice with latent sensitization when given prior to, but not after, umbellulone challenge, suggesting time-dependent contributions of calcitonin gene-related peptide receptor signaling in promoting migraine-like pain in this model. Activation of the calcitonin gene-related peptide receptor participates in initiating, but has a more limited role in maintaining, pain responses, supporting the efficacy of small molecule calcitonin gene-related peptide antagonists as preventive medications. Additionally, the effectiveness of sumatriptan in reversal of established pain thus suggests modulation of additional, non-calcitonin gene-related peptide receptor-mediated nociceptive mechanisms. Kappa opioid receptor antagonists may represent a novel preventive therapy for stress-related migraine.


Assuntos
Transtornos de Enxaqueca , Dor , Animais , Peptídeo Relacionado com Gene de Calcitonina , Modelos Animais de Doenças , Feminino , Hiperalgesia/induzido quimicamente , Hiperalgesia/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transtornos de Enxaqueca/prevenção & controle , Antagonistas de Entorpecentes , Propranolol , Ratos , Ratos Sprague-Dawley , Receptores de Peptídeo Relacionado com o Gene de Calcitonina , Receptores Opioides kappa , Sumatriptana
14.
Cephalalgia ; 41(6): 749-759, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33615840

RESUMO

AIM: Determine the role of calcitonin-gene related peptide in promoting post-traumatic headache and dysregulation of central pain modulation induced by mild traumatic brain injury in mice. METHODS: Mild traumatic brain injury was induced in lightly anesthetized male C57BL/6J mice by a weight drop onto a closed and unfixed skull, which allowed free head rotation after the impact. We first determined possible alterations in the diffuse noxious inhibitory controls, a measure of net descending pain inhibition called conditioned pain modulation in humans at day 2 following mild traumatic brain injury. Diffuse noxious inhibitory control was assessed as the latency to a thermally induced tail-flick that served as the test stimulus in the presence of right forepaw capsaicin injection that provided the conditioning stimulus. Post-traumatic headache-like behaviors were assessed by the development of cutaneous allodynia in the periorbital and hindpaw regions after mild traumatic brain injury. We then determined if intraperitoneal fremanezumab, an anti-calcitonin-gene related peptide monoclonal antibody or vehicle administered 2 h after sham or mild traumatic brain injury induction could alter cutaneous allodynia or diffuse noxious inhibitory control responses on day 2 post mild traumatic brain injury. RESULTS: In naïve and sham mice, capsaicin injection into the forepaw elevated the latency to tail-flick, reflecting the antinociceptive diffuse noxious inhibitory control response. Periorbital and hindpaw cutaneous allodynia, as well as a loss of diffuse noxious inhibitory control, was observed in mice 2 days after mild traumatic brain injury. Systemic treatment with fremanezumab blocked mild traumatic brain injury-induced cutaneous allodynia and prevented the loss of diffuse noxious inhibitory controls in mice subjected to a mild traumatic brain injury. INTERPRETATION: Sequestration of calcitonin-gene related peptide in the initial stages following mild traumatic brain injury blocked the acute allodynia that may reflect mild traumatic brain injury-related post-traumatic headache and, additionally, prevented the loss of net descending inhibition within central pain modulation pathways. As loss of conditioned pain modulation has been linked to multiple persistent pain conditions, dysregulation of descending modulatory pathways may contribute to the persistence of post-traumatic headache. Additionally, evaluation of the conditioned pain modulation/diffuse noxious inhibitory controls response may serve as a biomarker of vulnerability for chronic/persistent pain. These findings suggest that early anti-calcitonin-gene related peptide intervention has the potential to be effective both for the treatment of mild traumatic brain injury-induced post-traumatic headache, as well as inhibiting mechanisms that may promote post-traumatic headache persistence.


Assuntos
Concussão Encefálica , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Controle Inibitório Nociceptivo Difuso/efeitos dos fármacos , Neuralgia , Cefaleia Pós-Traumática/tratamento farmacológico , Animais , Anticorpos Monoclonais , Calcitonina , Capsaicina/farmacologia , Dor Crônica , Modelos Animais de Doenças , Hiperalgesia/etiologia , Hiperalgesia/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL
15.
Anesthesiology ; 132(4): 881-894, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31977518

RESUMO

BACKGROUND: The anterior cingulate cortex and central nucleus of the amygdala connect widely with brainstem nuclei involved in descending modulation, including the rostral ventromedial medulla. Endogenous opioids in these circuits participate in pain modulation. The hypothesis was that a differential opioidergic role for the brain nuclei listed in regulation of spinal neuronal responses because separable effects on pain behaviors in awake animals were previously observed. METHODS: This study utilized in vivo electrophysiology to determine the effects of morphine microinjection into the anterior cingulate cortex, right or left central nucleus of the amygdala, or the rostral ventromedial medulla on spinal wide dynamic range neuronal responses in isoflurane-anesthetized, male Sprague-Dawley rats. Ongoing activity in the ventrobasal thalamus was also measured. In total, 33 spinal nerve ligated and 26 control age- and weight-matched control rats were used. RESULTS: Brainstem morphine reduced neuronal firing to 60-g von Frey stimulation in control rats (to 65 ± 12% of control response (means ± 95% CI), P < 0.001) with a greater inhibition in neuropathic rats (to 53 ± 17% of control response, P < 0.001). Contrasting anterior cingulate cortex morphine had only marginal modulatory effects on spinal neuronal responses with limited variance in effect between control and neuropathic rats. The inhibitory effects of morphine in the central nucleus of the amygdala were dependent on pain state and laterality; only right-side morphine reduced neuronal firing to 60-g stimulation in neuropathic rats (to 65 ± 14% of control response, P = 0.001). In addition, in neuropathic rats elevated ongoing neuronal activity in the ventral posterolateral thalamus was not inhibited by anterior cingulate cortex morphine, in contrast to evoked responses. CONCLUSIONS: Cumulatively the data support opioid modulation of evoked responses predominately through a lateralized output from the right amygdala, as well as from the brainstem that is enhanced in injured conditions. Minimal modulation of dorsal horn responses was observed after anterior cingulate cortex opioid administration regardless of injury state.


Assuntos
Tonsila do Cerebelo/efeitos dos fármacos , Analgésicos Opioides/administração & dosagem , Morfina/administração & dosagem , Rede Nervosa/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Nervos Espinhais/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Tonsila do Cerebelo/fisiologia , Animais , Relação Dose-Resposta a Droga , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/fisiologia , Masculino , Bulbo/efeitos dos fármacos , Bulbo/fisiologia , Microinjeções/métodos , Rede Nervosa/fisiologia , Doenças do Sistema Nervoso Periférico/fisiopatologia , Células do Corno Posterior/efeitos dos fármacos , Células do Corno Posterior/fisiologia , Ratos , Ratos Sprague-Dawley , Nervos Espinhais/fisiologia
16.
Cephalalgia ; 40(9): 892-902, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32615788

RESUMO

BACKGROUND: Ubrogepant, a small-molecule calcitonin gene-related peptide receptor antagonist, was recently approved as an oral medication for the acute treatment of migraine. This study aimed to determine whether ubrogepant shows efficacy in a preclinical model of migraine-like pain and whether repeated oral administration of ubrogepant induces latent sensitization relevant to medication overuse headache in rats. METHODS: A "two-hit" priming model of medication overuse headache was used. Female Sprague-Dawley rats received six oral doses of sumatriptan 10 mg/kg over 2 weeks to induce latent sensitization (i.e. "priming"). Cutaneous allodynia was measured periodically over 20 days in the periorbital and hindpaw regions using von Frey filaments. The rats were then subjected to a 1-hour bright light stress challenge on two consecutive days. At the start of the second bright light stress exposure, oral sumatriptan 10 mg/kg, oral ubrogepant 25, 50, or 100 mg/kg, or vehicle was administered; thereafter, cephalic and hindpaw sensory thresholds were monitored hourly over 5 hours to determine the efficacy of ubrogepant in reversing bright light stress-induced cutaneous allodynia. A dose of ubrogepant effective in the medication overuse headache model (100 mg/kg) was then selected to determine if repeated administration would produce latent sensitization. Rats were administered six oral doses of ubrogepant 100 mg/kg, sumatriptan 10 mg/kg (positive control), or vehicle over 2 weeks, and cutaneous allodynia was evaluated regularly. Testing continued until mechanosensitivity returned to baseline levels. Rats were then challenged with bright light stress on days 20 and 21, and periorbital and hindpaw cutaneous allodynia was measured. On days 28 to 32, the same groups received a nitric oxide donor (sodium nitroprusside 3 mg/kg, i.p.), and cutaneous allodynia was assessed hourly over 5 hours. RESULTS: Sumatriptan elicited cutaneous allodynia in both cephalic and hindpaw regions; cutaneous allodynia resolved to baseline levels after cessation of drug administration (14 days). Sumatriptan priming resulted in generalized and delayed cutaneous allodynia, evoked by either bright light stress (day 21) or nitric oxide donor (day 28). Ubrogepant dose-dependently blocked both stress- and nitric oxide donor-induced cephalic and hindpaw allodynia in the sumatriptan-induced medication overuse headache model with a 50% effective dose of ∼50 mg/kg. Unlike sumatriptan, ubrogepant 100 mg/kg in repeated effective doses did not produce cutaneous allodynia or latent sensitization. CONCLUSIONS: Both ubrogepant and sumatriptan demonstrated efficacy as acute medications for stress- and nitric oxide donor-evoked cephalic allodynia in a preclinical model of medication overuse headache, consistent with their clinical efficacy in the acute treatment of migraine. However, in contrast to sumatriptan, repeated treatment with ubrogepant did not induce cutaneous allodynia or latent sensitization. These studies suggest ubrogepant may offer an effective acute treatment of migraine without risk of medication overuse headache.Trial Registration Number: Not applicable.


Assuntos
Analgésicos/farmacologia , Sensibilização do Sistema Nervoso Central/efeitos dos fármacos , Transtornos da Cefaleia Secundários , Hiperalgesia/induzido quimicamente , Piridinas/farmacologia , Pirróis/farmacologia , Animais , Modelos Animais de Doenças , Feminino , Ratos , Ratos Sprague-Dawley , Sumatriptana/farmacologia
17.
Cephalalgia ; 40(1): 68-78, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31311288

RESUMO

AIM: Evaluation of cannabinoid receptor agonists in a preclinical model of medication overuse headache. METHODS: Female Sprague Dawley rats received graded intraperitoneal doses of WIN55,212-2 or Δ-9-tetrahydrocannabinol (Δ-9-THC). Antinociception (tail-flick test), catalepsy and hypomotility (open field test) and impairment of motor function (rotarod test) were assessed to establish effective dosing. Rats were then treated twice daily with equianalgesic doses of WIN55,212-2 or Δ-9-THC, or vehicle, for 7 days and cutaneous tactile sensory thresholds were evaluated during and three weeks following drug discontinuation. Rats then received a one-hour period of bright light stress (BLS) on two consecutive days and tactile sensory thresholds were re-assessed. RESULTS: WIN55,212-2 and Δ-9-THC produced antinociception as well as hypomotility, catalepsy and motor impairment. Repeated administration of WIN55,212-2 and Δ-9-THC induced generalized periorbital and hindpaw allodynia that resolved within 3 weeks after discontinuation of drug. Two episodes of BLS produced delayed and long-lasting periorbital and hindpaw allodynia selectively in rats previously treated with WIN55,212-2, and Δ-9-THC. INTERPRETATION: Cannabinoid receptor agonists including Δ-9-THC produce a state of latent sensitization characterized by increased sensitivity to stress, a presumed migraine trigger. Overuse of cannabinoids including cannabis may increase the risk of medication overuse headache in vulnerable individuals.


Assuntos
Benzoxazinas/toxicidade , Agonistas de Receptores de Canabinoides/toxicidade , Modelos Animais de Doenças , Dronabinol/toxicidade , Transtornos da Cefaleia Secundários/induzido quimicamente , Morfolinas/toxicidade , Naftalenos/toxicidade , Medição da Dor/efeitos dos fármacos , Animais , Canabinoides/toxicidade , Relação Dose-Resposta a Droga , Feminino , Transtornos da Cefaleia Secundários/psicologia , Medição da Dor/métodos , Ratos , Ratos Sprague-Dawley
18.
Cephalalgia ; 40(9): 903-912, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32580575

RESUMO

BACKGROUND: Medication overuse is a significant issue that complicates the treatment of headache disorders. The most effective medications for the acute treatment of migraine all have the capacity to induce medication overuse headache (MOH). Novel acute migraine-specific treatments are being developed. However, because the mechanism(s) underlying medication overuse headache are not well understood, it is difficult to predict whether any particular acute medication will induce MOH in susceptible individuals. LY573144 (lasmiditan), a 5-HT1F receptor agonist, has recently been shown to be effective in the acute treatment of migraine in phase 3 trials. The aim of this study is to determine whether frequent administration of lasmiditan induces behaviors consistent with MOH in a pre-clinical rat model. METHODS: Sprague Dawley rats were administered six doses of lasmiditan (10 mg/kg), sumatriptan (10 mg/kg), or sterile water orally over 2 weeks and cutaneous allodynia was evaluated regularly in the periorbital and hindpaw regions using von Frey filaments. Testing continued until mechanosensitivity returned to baseline levels. Rats were then submitted to bright light stress (BLS) or nitric oxide (NO) donor administration and were again evaluated for cutaneous allodynia in the periorbital and hindpaw regions hourly for 5 hours. RESULTS: Both lasmiditan and sumatriptan exhibited comparable levels of drug-induced cutaneous allodynia in both the periorbital and hindpaw regions, which resolved after cessation of drug administration. Both lasmiditan and sumatriptan pre-treatment resulted in cutaneous allodynia that was evoked by either BLS or NO donor. CONCLUSIONS: In a pre-clinical rat model of MOH, oral lasmiditan, like sumatriptan, induced acute transient cutaneous allodynia in the periorbital and hindpaw regions that after resolution could be re-evoked by putative migraine triggers. These results suggest that lasmiditan has the capacity to induce MOH through persistent latent peripheral and central sensitization mechanisms.


Assuntos
Analgésicos/toxicidade , Benzamidas/toxicidade , Transtornos da Cefaleia Secundários/induzido quimicamente , Hiperalgesia/induzido quimicamente , Piperidinas/toxicidade , Piridinas/toxicidade , Agonistas do Receptor de Serotonina/toxicidade , Animais , Sensibilização do Sistema Nervoso Central/efeitos dos fármacos , Modelos Animais de Doenças , Ratos , Ratos Sprague-Dawley , Sumatriptana/toxicidade
19.
Cephalalgia ; 40(14): 1535-1550, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33131305

RESUMO

AIM: Migraine pain is thought to result from activation of meningeal nociceptors that might involve dural mast cell degranulation and release of proteases and pronociceptive mediators. Tryptase, the most abundant dural mast cell protease, has been demonstrated to stimulate dural mast cells, as well as trigeminal nociceptors by activating the protease activated receptor 2. Mast cell or neuronal protease activated receptors 2 may therefore represent a novel target for migraine treatment. In this study, we characterized and evaluated a novel protease activated receptor 2 monoclonal antibody as a preventive anti-migraine pain therapy in preclinical models. METHODS: Flow cytometry, immunocytochemistry, calcium imaging, Homogeneous Time Resolved Technology (HTRF) epitope competition assay and serum pharmacokinetic (PK) assay in rats were performed to confirm the activity, specificity and in vivo stability of PAR650097, a novel anti- protease activated receptor 2 monoclonal antibody. In vivo assessment was performed in female C57BL/6J mice by evaluation of PAR650097 in preventing cutaneous allodynia elicited by (a) supradural injection of the protease activated receptor 2 agonist, Ser-Leu-Ile-Gly-Arg-Leu-amide trifluoroacetate (SLIGRL), or calcitonin gene-related (CGRP) peptide, and (b) induction of latent sensitization by priming with three daily episodes of restraint stress followed by challenge with a subthreshold inhalational exposure to umbellulone (UMB), a transient receptor potential ankyrin 1 (TRPA1) agonist. PAR650097 was administered as a pretreatment prior to the first restraint stress, umbellulone exposure, SLIGRL or calcitonin gene-related peptide injection. Additionally, fremanezumab, a calcitonin gene-related peptide antibody was administered as pre-treatment prior to supradural administration of calcitonin gene-related peptide or SLIGRL. RESULTS: In vitro, PAR650097 demonstrated rapid interaction with protease activated receptor 2, enabling it to fully inhibit protease-induced protease activated receptor 2 activation, in human and mouse cells, with high potency. Furthermore, PAR650097 was highly selective for protease activated receptor 2, demonstrating no affinity for protease activated receptor 1 protein and no functional effect on the activation of cellular protease activated receptor 1 with thrombin. In addition, PAR650097 had an acceptable PK profile, compatible with testing the effects of selective protease activated receptor 2 inhibition in vivo. In vivo, PAR650097 blocked cutaneous allodynia induced by either supradural SLIGRL or calcitonin gene-related peptide. Fremanezumab abolished cutaneous allodynia induced by supradural CGRP, and partially attenuated cutaneous allodynia induced by SLIGRL. Administration of PAR650097, before the first restraint stress episode, did not prevent the acute stress-induced cutaneous allodynia or restraint stress priming revealed by cutaneous allodynia induced by inhalational umbellulone. In contrast, PAR650097 prevented expression of cutaneous allodynia when given before the umbellulone challenge in restraint stress-primed animals. CONCLUSION: PAR650097 specifically inhibits endogenously expressed protease activated receptor 2 in human and mouse cells with high potency. This antibody has an acceptable PK profile in rodents and effectively blocked SLIGR-induced cutaneous allodynia. PAR650097 additionally prevented cutaneous allodynia induced by supradural calcitonin gene-related peptide, indicating that the protease activated receptor 2 receptor is a downstream consequence of calcitonin gene-related peptide actions. Fremanezumab effectively blocked calcitonin gene-related peptide-induced cutaneous allodynia and only partially reduced cutaneous allodynia induced by a protease activated receptor 2 activator, suggesting both calcitonin gene-related peptide-dependent and -independent mechanisms in promoting migraine pain. While PAR650097 did not prevent stress-induced cutaneous allodynia or priming, it effectively prevented cutaneous allodynia induced by a TRPA1 agonist in animals with latent sensitization. Activation of protease activated receptor 2, therefore, contributes to both calcitonin gene-related peptide-dependent and -independent mechanisms in promoting migraine-like pain. Therapeutic targeting of protease activated receptor 2 receptors may represent an anti-migraine pain strategy with a potentially broad efficacy profile.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Transtornos de Enxaqueca , Animais , Anticorpos Monoclonais , Feminino , Hiperalgesia/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/prevenção & controle , Dor , Peptídeo Hidrolases , Ratos , Receptor PAR-1 , Receptor PAR-2
20.
Cephalalgia ; 39(5): 617-625, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30286616

RESUMO

BACKGROUND: Loss of conditioned pain modulation/diffuse noxious inhibitory controls has been demonstrated in patients with migraine and medication overuse headache. We hypothesized that exposure to acute migraine medications may lead to dysregulation of central pain modulatory circuits that could be revealed by evaluating diffuse noxious inhibitory controls and that prior noxious stimulus is required for a loss of the diffuse noxious inhibitory control response in rats exposed to these medications. METHODS: Rats were "primed" by continuous infusion of morphine or one of two doses of sumatriptan. Diffuse noxious inhibitory control was evaluated at the end of drug-priming (day 7) and again after sensory thresholds returned to baseline (day 21). The Randall-Selitto hindpaw pressure test was used as the test stimulus and forepaw capsaicin injection served as the conditioning stimulus. RESULTS: Morphine-primed rats showed opioid-induced hyperalgesia accompanied by a loss of diffuse noxious inhibitory controls on day 7. Sumatriptan-primed rats did not develop hyperalgesia or loss of diffuse noxious inhibitory controls on day 7. Morphine-primed and high-dose sumatriptan-primed rats only had a loss of diffuse noxious inhibitory control on day 21 if they received a capsaicin injection on day 7. CONCLUSIONS: Prolonged exposure to migraine treatments followed by an acute nociceptive stimulation caused long-lasting alterations in descending pain modulation, shown by a loss of diffuse noxious inhibitory controls. Morphine was more detrimental than sumatriptan, consistent with clinical observations of higher medication overuse headache risk with opioids. These data suggest a mechanism of medication overuse headache by which migraine medications combined with repeated episodes of pain may amplify the consequences of nociceptor activation and increase the probability of future migraine attacks as well as risk of medication overuse headache.


Assuntos
Analgésicos/farmacologia , Transtornos da Cefaleia Secundários/fisiopatologia , Hiperalgesia/fisiopatologia , Transtornos de Enxaqueca/fisiopatologia , Analgésicos Opioides/farmacologia , Animais , Masculino , Morfina/farmacologia , Ratos , Ratos Sprague-Dawley , Priming de Repetição/efeitos dos fármacos , Priming de Repetição/fisiologia , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Sumatriptana/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA