Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Org Biomol Chem ; 21(35): 7180-7187, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37624045

RESUMO

Base-catalyzed diastereodivergent thia-Michael addition of thiols to chiral ß-trifluoromethyl-α,ß-unsaturated N-acylated oxazolidin-2-ones is reported. By tuning the base-catalyst (i-Pr2NEt, DABCO, or P2-t-Bu), a range of chiral thia-Michael adducts was synthesized in good yields with high diastereoselectivities. A plausible mechanism was proposed on the basis of the experimental results. This work is complementary to the existing methods offering advantages, e.g., switchable diastereoselectivity using a readily synthesized chiral starting material, a cheap and readily available base catalyst, and a simple and practical operation, enabling synthetic application in organic synthesis.

2.
J Org Chem ; 85(17): 11340-11349, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32786651

RESUMO

The hydroheteroarylation of allylbenzene with pyridine as catalyzed by Ni/AlMe3 and a N-heterocyclic carbene ligand has recently been established. Density functional calculations revealed that the common stepwise pathway, which involves the C-H oxidative addition of pyridine-AlMe3 before the migratory insertion of allylbenzene, is unlikely as the migratory insertion needs to overcome a prohibitively high energy barrier. In contrast, the ligand-to-ligand hydrogen transfer pathway is more favorable in which the hydrogen is transferred directly from the para-position of pyridine-AlMe3 to C2 of allylbenzene. Our distortion-interaction analysis and natural bond orbital analysis indicate that the interaction energy is strongly correlated with the extent of the charge transfer from the alkene (hydrogen acceptor) to the pyridine-AlMe3 (hydrogen donor), which dictates the selectivity of the H-transfer to the C2 position of allylbenzene. Then, the subsequent C-C reductive elimination of the regioselective linear product is facilitated by the steric hindrance of the IPr ligand. Understanding these key factors affecting the product regioselectivity is important to the development of catalysts for hydroheteroarylation of alkenes.

3.
Dalton Trans ; 53(26): 11050-11059, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38885064

RESUMO

Alkyl aluminium plays a primary role in activating Ti within Ziegler-Natta (ZN) catalysts for propylene polymerization. We performed density functional calculations to explore the additional roles of AlEt3 and AlEt2Cl, in conjunction with diisobutyl phthalate (DIBP) internal donor and dicyclopentyl dimethoxysilane (DCPDMS) external donor, to enhance the stereoselectivity of propene insertion. Based on our calculated adsorption energies on the (MgCl2)13/TiCl2iBu cluster model for the ZN catalyst, the presence of DIBP on the cluster essentially facilitated AlEt2Cl adsorption while AlEt2Cl also promoted the adsorption of DIBP. The reaction between AlEt3 and DIBP on the cluster led to the extraction of DIBP, creating an available site for DCPDMS adsorption. While the stereoselectivity, represented by the difference in the activation energies between 1,2-re and 1,2-si insertions of propene, was negligible on the cluster containing only DIBP, it became significant on the clusters containing both AlEt2Cl and DIBP (and DCPDMS). AlEt2Cl plays a pivotal role in imposing steric effects near the Ti active site, thereby increasing stereoselectivity. Our findings suggest the importance of including AlEt2Cl alongside DIBP (and DCPDMS) in the ZN cluster model to investigate stereoselective propene insertion. Considering AlEt2Cl adsorption and AlEt3 reaction with internal donors is essential in developing Ziegler-Natta catalysts.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 282: 121662, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-35905612

RESUMO

New chemosensors, L1-L3, based on the coumarin Schiff base scaffold with substituent modifications, have been designed and synthesized. The chemosensors L1-L3 exhibited the absorbance and fluorescence spectral changes that can discriminate Co2+, Ni2+, and Cu2+ ions. Sensor L1 demonstrated the ability to respond to Co2+, Ni2+, and Cu2+ ions. Remarkably, the slight modification of substituent on L2 has been observed to cause selective binding to Ni2+ and Cu2+ ions while L3 can specifically detect Cu2+ ions. The in-situ formation of metal and ligand complexes was determined by Job's plot analysis. The limit of detection and the sensing ability of all probes are estimated to be within the range of safe drinking water. Incorporation of the sensing compounds into a paper-based detection system using a laminated paper-based analytical device (LPAD) was demonstrated and found to be consistent to those obtained from the batchwise solution measurements.


Assuntos
Colorimetria , Corantes Fluorescentes , Aminocumarinas , Cobre/análise , Corantes Fluorescentes/química , Íons/análise , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA