Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Am J Otolaryngol ; 33(1): 37-46, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21439680

RESUMO

PURPOSE: Low numbers of primary auditory neurons (ANs) may compromise the clinical performance of a cochlear implant. The focus of this research is to determine whether stem cells can be used to replace the ANs lost following deafness. To successfully replace these neurons, stem cells must be capable of directed differentiation into a sensory neural lineage in vitro and, subsequently, of survival and integration into the deafened cochlea. MATERIALS AND METHODS: In this study, we compared three in vitro treatments for directing the differentiation of mouse embryonic stem cells toward a sensory neural fate using neurotrophins, conditioned media from early post-natal cochlear epithelium, or media containing BMP4. RESULTS: In all treatments, stem cells were first exposed to retinoic acid, which was sufficient to induce Brn3a-positive patterning in 8-day differentiated embryoid bodies. After a further 8 days of differentiation in adherent culture conditions, BMP4 media-treated cultures produced higher proportions of cells expressing sensory neural markers in comparison to both the conditioned media and neurotrophin treatments, including significantly greater numbers of cells expressing peripherin (P ≤ .001), tyrosine receptor kinase B (P ≤ .001), and ß-III tubulin (P ≤ .001). CONCLUSIONS: This study illustrated that combined treatment with retinoic acid and BMP4 was most effective at directing differentiation of mouse stem cells into sensory-like neurons in vitro. This finding further supports the role of bone morphogenetic proteins in the differentiation of sensory neurons from neural progenitors, and provides a basis for allotransplantation studies for auditory neuron replacement in the deaf mouse cochlea.


Assuntos
Proteína Morfogenética Óssea 4/farmacologia , Diferenciação Celular/efeitos dos fármacos , Cóclea/citologia , Meios de Cultivo Condicionados/farmacologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Fatores de Crescimento Neural/farmacologia , Tretinoína/farmacologia , Animais , Anticorpos/farmacologia , Células Cultivadas , Corpos Embrioides/citologia , Corpos Embrioides/efeitos dos fármacos , Imunoquímica , Técnicas In Vitro , Camundongos , Fotomicrografia , Coloração e Rotulagem
2.
J Mol Med (Berl) ; 100(5): 797-813, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35471608

RESUMO

Aminoglycoside antibiotics are lifesaving medicines, crucial for the treatment of chronic or drug resistant infections. However, aminoglycosides are toxic to the sensory hair cells in the inner ear. As a result, aminoglycoside-treated individuals can develop permanent hearing loss and vestibular impairment. There is considerable evidence that reactive oxygen species (ROS) production and the subsequent phosphorylation of c-Jun N-terminal kinase (JNK) and P38 mitogen-activated protein kinase (P38) drives apoptosis in aminoglycoside-treated hair cells. However, treatment strategies that directly inhibit ROS, JNK, or P38 are limited by the importance of these molecules for normal cellular function. Alternatively, the upstream regulator apoptosis signal-regulating kinase 1 (ASK1/MAP3K5) is a key mediator of ROS-induced JNK and P38 activation under pathologic but not homeostatic conditions. We investigated ASK1 as a mediator of drug-induced hair cell death using cochlear explants from Ask1 knockout mice, demonstrating that Ask1 deficiency attenuates neomycin-induced hair cell death. We then evaluated pharmacological inhibition of ASK1 with GS-444217 as a potential otoprotective therapy. GS-444217 significantly attenuated hair cell death in neomycin-treated explants but did not impact aminoglycoside efficacy against P. aeruginosa in the broth dilution test. Overall, we provide significant pre-clinical evidence that ASK1 inhibition represents a novel strategy for preventing aminoglycoside ototoxicity. KEY MESSAGES: ASK1 is an upstream, redox-sensitive regulator of P38 and JNK, which are known mediators of hair cell death. Ask1 knockout does not affect hair cell development in vivo, but significantly reduces aminoglycoside-induced hair cell death in vitro. A small-molecule inhibitor of ASK1 attenuates neomycin-induced hair cell death, and does not impact antibiotic efficacy in vitro. ASK1 may be a novel molecular target for preventing aminoglycoside-induced hearing loss.


Assuntos
Aminoglicosídeos , Células Ciliadas Auditivas , Perda Auditiva , MAP Quinase Quinase Quinase 5 , Aminoglicosídeos/efeitos adversos , Animais , Antibacterianos/efeitos adversos , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patologia , Perda Auditiva/induzido quimicamente , Perda Auditiva/metabolismo , Perda Auditiva/patologia , Perda Auditiva/prevenção & controle , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , Camundongos , Neomicina/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
J Neural Eng ; 18(4): 046003, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33724234

RESUMO

OBJECTIVE: Infrared light can be used to modulate the activity of neuronal cells through thermally-evoked capacitive currents and thermosensitive ion channel modulation. The infrared power threshold for action potentials has previously been found to be far lower in the in vivo cochlea when compared with other neuronal targets, implicating spiral ganglion neurons (SGNs) as a potential target for infrared auditory prostheses. However, conflicting experimental evidence suggests that this low threshold may arise from an intermediary mechanism other than direct SGN stimulation, potentially involving residual hair cell activity. APPROACH: Patch-clamp recordings from cultured SGNs were used to explicitly quantify the capacitive and ion channel currents in an environment devoid of hair cells. Neurons were irradiated by a 1870 nm laser with pulse durations of 0.2-5.0 ms and powers up to 1.5 W. A Hodgkin-Huxley-type model was established by first characterising the voltage dependent currents, and then incorporating laser-evoked currents separated into temperature-dependent and temperature-gradient-dependent components. This model was found to accurately simulate neuronal responses and allowed the results to be extrapolated to stimulation parameter spaces not accessible during this study. MAIN RESULTS: The previously-reported low in vivo SGN stimulation threshold was not observed, and only subthreshold depolarisation was achieved, even at high light exposures. Extrapolating these results with our Hodgkin-Huxley-type model predicts an action potential threshold which does not deviate significantly from other neuronal types. SIGNIFICANCE: This suggests that the low-threshold response that is commonly reported in vivo may arise from an alternative mechanism, and calls into question the potential usefulness of the effect for auditory prostheses. The step-wise approach to modelling optically-evoked currents described here may prove useful for analysing a wider range of cell types where capacitive currents and conductance modulation are dominant.


Assuntos
Neurônios , Gânglio Espiral da Cóclea , Potenciais de Ação , Cóclea , Raios Infravermelhos
4.
Front Neurosci ; 15: 733291, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34759790

RESUMO

Sodium channel expression in inner ear afferents is essential for the transmission of vestibular and auditory information to the central nervous system. During development, however, there is also a transient expression of Na+ channels in vestibular and auditory hair cells. Using qPCR analysis, we describe the expression of four Na+ channel genes, SCN5A (Nav1.5), SCN8A (Nav1.6), SCN9A (Nav1.7), and SCN10A (Nav1.8) in the human fetal cristae ampullares, utricle, and base, middle, and apex of the cochlea. Our data show distinct patterns of Na+ channel gene expression with age and between these inner ear organs. In the utricle, there was a general trend toward fold-change increases in expression of SCN8A, SCN9A, and SCN10A with age, while the crista exhibited fold-change increases in SCN5A and SCN8A and fold-change decreases in SCN9A and SCN10A. Fold-change differences of each gene in the cochlea were more complex and likely related to distinct patterns of expression based on tonotopy. Generally, the relative expression of SCN genes in the cochlea was greater than that in utricle and cristae ampullares. We also recorded Na+ currents from developing human vestibular hair cells aged 10-11 weeks gestation (WG), 12-13 WG, and 14+ WG and found there is a decrease in the number of vestibular hair cells that exhibit Na+ currents with increasing gestational age. Na+ current properties and responses to the application of tetrodotoxin (TTX; 1 µM) in human fetal vestibular hair cells are consistent with those recorded in other species during embryonic and postnatal development. Both TTX-sensitive and TTX-resistant currents are present in human fetal vestibular hair cells. These results provide a timeline of sodium channel gene expression in inner ear neuroepithelium and the physiological characterization of Na+ currents in human fetal vestibular neuroepithelium. Understanding the normal developmental timeline of ion channel gene expression and when cells express functional ion channels is essential information for regenerative technologies.

5.
J Mol Med (Berl) ; 98(3): 335-348, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32060587

RESUMO

p38 mitogen-activated protein kinases (P38α and ß) and c-Jun N-terminal kinases (JNK1, 2, and 3) are key mediators of the cellular stress response. However, prolonged P38 and JNK signalling is associated with damaging inflammatory responses, reactive oxygen species-induced cell death, and fibrosis in multiple tissues, such as the kidney, liver, central nervous system, and cardiopulmonary systems. These responses are associated with many human diseases, including arthritis, dementia, and multiple organ dysfunctions. Attempts to prevent P38- and JNK-mediated disease using small molecule inhibitors of P38 or JNK have generally been unsuccessful. However, apoptosis signal-regulating kinase 1 (ASK1), an upstream regulator of P38 and JNK, has emerged as an alternative drug target for limiting P38- and JNK-mediated disease. Within this review, we compile the evidence that ASK1 mediates damaging cellular responses via prolonged P38 or JNK activation. We discuss the potential benefits of ASK1 inhibition as a therapeutic and summarise the studies that have tested the effects of ASK1 inhibition in cell and animal disease models, in addition to human clinical trials for a variety of disorders.


Assuntos
MAP Quinase Quinase Quinase 5/antagonistas & inibidores , Animais , Encefalopatias/tratamento farmacológico , Encefalopatias/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Nefropatias/tratamento farmacológico , Nefropatias/metabolismo , Hepatopatias/tratamento farmacológico , Hepatopatias/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo
6.
Biomed Opt Express ; 11(4): 2224-2234, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32341879

RESUMO

In infrared neural stimulation (INS), laser-evoked thermal transients are used to generate small depolarising currents in neurons. The laser exposure poses a moderate risk of thermal damage to the target neuron. Indeed, exogenous methods of neural stimulation often place the target neurons under stressful non-physiological conditions, which can hinder ordinary neuronal function and hasten cell death. Therefore, quantifying the exposure-dependent probability of neuronal damage is essential for identifying safe operating limits of INS and other interventions for therapeutic and prosthetic use. Using patch-clamp recordings in isolated spiral ganglion neurons, we describe a method for determining the dose-dependent damage probabilities of individual neurons in response to both acute and cumulative infrared exposure parameters based on changes in injection current. The results identify a local thermal damage threshold at approximately 60 °C, which is in keeping with previous literature and supports the claim that damage during INS is a purely thermal phenomenon. In principle this method can be applied to any potentially injurious stimuli, allowing for the calculation of a wide range of dose-dependent neural damage probabilities. Unlike histological analyses, the technique is well-suited to quantifying gradual neuronal damage, and critical threshold behaviour is not required.

7.
J Neural Eng ; 17(2): 026018, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32135529

RESUMO

OBJECTIVE: Evaluate electrochemical properties, biological response, and surface characterization of a conductive hydrogel (CH) coating following chronic in vivo stimulation. APPROACH: Coated CH or uncoated smooth platinum (Pt) electrode arrays were implanted into the cochlea of rats and stimulated over a 5 week period with more than 57 million biphasic current pulses. Electrochemical impedance spectroscopy (EIS), charge storage capacity (CSC), charge injection limit (CIL), and voltage transient (VT) impedance were measured on the bench before and after stimulation, and in vivo during the stimulation program. Electrically-evoked auditory brainstem responses were recorded to monitor neural function. Following explant, the cochleae were examined histologically and electrodes were examined using scanning electron microscopy. MAIN RESULTS: CH coated electrodes demonstrated a bench-top electrochemical advantage over Pt electrodes before and after the electrical stimulation program. In vivo, CH coated electrodes also had a significant advantage over Pt electrodes throughout the stimulation program, exhibiting higher CSC (p= 0.002), larger CIL (p = 0.002), and lower VT impedance (p < 0.001). The CH cohort exhibited a greater tissue response (p= 0.003) with small deposits of particulate material within the tissue capsule. There was no loss in auditory neuron density or change in neural response thresholds in any cochleae. Examination of the electrode surface revealed that most CH electrodes exhibited some coating loss; however, there was no evidence of corrosion in the underlying Pt. SIGNIFICANCE: CH coated electrodes demonstrated significant electrochemical advantages on the bench-top and in vivo and maintained neural function despite an increased tissue response and coating loss. While further research is required to understand the cause of the coating loss, CH electrodes provide promise for use in neural prostheses.


Assuntos
Implantes Cocleares , Animais , Cóclea , Estimulação Elétrica , Eletrodos , Eletrodos Implantados , Potenciais Evocados Auditivos do Tronco Encefálico , Hidrogéis , Ratos
8.
J Neural Eng ; 17(3): 036012, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32408281

RESUMO

OBJECTIVE: To evaluate the electrochemical properties, biological response, and surface characterization of an electrodeposited Platinum-Iridium (Pt-Ir) electrode coating on cochlear implants subjected to chronic stimulation in vivo. APPROACH: Electrochemical impedance spectroscopy (EIS), charge storage capacity (CSC), charge injection limit (CIL), and voltage transient (VT) impedance were measured bench-top before and after implant and in vivo. Coated Pt-Ir and uncoated Pt electrode arrays were implanted into cochlea of normal hearing rats and stimulated for ∼4 h d, 5 d week-1 for 5 weeks at levels within the normal clinical range. Neural function was monitored using electrically-evoked auditory brainstem responses. After explant, the electrode surfaces were assessed, and cochleae examined histologically. MAIN RESULTS: When measured on bench-top before and after stimulation, Pt-Ir coated electrodes had significantly lower VT impedance (p < 0.001) and significantly higher CSC (p < 0.001) and CIL (p < 0.001) compared to uncoated Pt electrodes. In vivo, the CSC and CIL of Pt-Ir were significantly higher than Pt throughout the implantation period (p= 0.047 and p< 0.001, respectively); however, the VT impedance (p= 0.3) was not. There was no difference in foreign body response between material cohorts, although cochleae implanted with coated electrodes contained small deposits of Pt-Ir. There was no evidence of increased neural loss or loss of neural function in either group. Surface examination revealed no Pt corrosion on any electrodes. SIGNIFICANCE: Electrodeposited Pt-Ir electrodes demonstrated significant improvements in electrochemical performance on the bench-top and in vivo compared to uncoated Pt. Neural function and tissue response to Pt-Ir electrodes were not different from uncoated Pt, despite small deposits of Pt-Ir in the tissue capsule. Electrodeposited Pt-Ir coatings offer promise as an improved electrode coating for active neural prostheses.


Assuntos
Implante Coclear , Implantes Cocleares , Animais , Eletrodos , Irídio , Platina , Ratos
9.
Stem Cells Int ; 2019: 8419493, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31827535

RESUMO

Stem cells have been touted as a source of potential replacement neurons for inner ear degeneration for almost two decades now; yet to date, there are few studies describing the use of human pluripotent stem cells (hPSCs) for this purpose. If stem cell therapies are to be used clinically, it is critical to validate the usefulness of hPSC lines in vitro and in vivo. Here, we present the first quantitative evidence that differentiated hPSC-derived neurons that innervate both the inner ear hair cells and cochlear nucleus neurons in coculture, with significantly more new synaptic contacts formed on target cell types. Nascent contacts between stem cells and hair cells were immunopositive for both synapsin I and VGLUT1, closely resembling expression of these puncta in endogenous postnatal auditory neurons and control cocultures. When hPSCs were cocultured with cochlear nucleus brainstem slice, significantly greater numbers of VGLUT1 puncta were observed in comparison to slice alone. New VGLUT1 puncta in cocultures with cochlear nucleus slice were not significantly different in size, only in quantity. This experimentation describes new coculture models for assessing auditory regeneration using well-characterised hPSC-derived neurons and highlights useful methods to quantify the extent of innervation on different cell types in the inner ear and brainstem.

10.
Hear Res ; 377: 1-11, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30877899

RESUMO

Since its inception 30 years ago, diffusion-weighted magnetic resonance imaging (dMRI) has advanced to become a common component of routine clinical MRI examinations. Diffusion-weighted magnetic resonance offers a way to measure anisotropic diffusion in-vivo, which has led to the development of techniques capable of characterising the orientation of diffusion within living tissue. These modelling techniques can be used to investigate the microstructure and connectivity of white matter tracts within the human brain. Such techniques have been used to study many neural networks within the human body. There is, however, a notable paucity of research utilising dMRI techniques to investigate the white matter tracts of the auditory brainstem. In this review we provide a brief introduction to the basic principles of dMRI analysis and consider some of the difficulties associated with applying dMRI techniques to study the auditory pathways of the brainstem. We also consider aspects of current dMRI methodologies relevant to the auditory brainstem to inform future research in this area.


Assuntos
Vias Auditivas/diagnóstico por imagem , Percepção Auditiva , Tronco Encefálico/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Audição , Substância Branca/diagnóstico por imagem , Vias Auditivas/fisiopatologia , Tronco Encefálico/fisiopatologia , Imagem de Tensor de Difusão , Humanos , Valor Preditivo dos Testes , Substância Branca/fisiopatologia
11.
Front Cell Neurosci ; 13: 170, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31130846

RESUMO

The inner ear is a complex organ containing highly specialised cell types and structures that are critical for sensing sound and movement. In vivo, the inner ear is difficult to study due to the osseous nature of the otic capsule and its encapsulation within an intricate bony labyrinth. As such, mammalian inner ear explants are an invaluable tool for the study and manipulation of the complex intercellular connections, structures, and cell types within this specialised organ. The greatest strength of this technique is that the complete organ of Corti, or peripheral vestibular organs including hair cells, supporting cells and accompanying neurons, is maintained in its in situ form. The greatest weakness of in vitro hair cell preparations is the short time frame in which the explanted tissue remains viable. Yet, cochlear explants have proven to be an excellent experimental model for understanding the fundamental aspects of auditory biology, substantiated by their use for over 40 years. In this protocol, we present a modernised inner ear explant technique that employs organotypic cell culture inserts and serum free media. This approach decreases the likelihood of explant damage by eliminating the need for adhesive substances. Serum free media also restricts excessive cellular outgrowth and inter-experimental variability, both of which are side effects of exogenous serum addition to cell cultures. The protocol described can be applied to culture both cochlear and vestibular explants from various mammals. Example outcomes are demonstrated by immunohistochemistry, hair cell quantification, and electrophysiological recordings to validate the versatility and viability of the protocol.

12.
Front Cell Dev Biol ; 7: 25, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30891447

RESUMO

Hair cells are specialized mechanosensitive cells responsible for mediating balance and hearing within the inner ear. In mammals, hair cells are limited in number and do not regenerate. Human pluripotent stem cells (hPSCs) provide a valuable source for deriving human hair cells to study their development and design therapies to treat and/or prevent their degeneration. In this study we used a dynamic 3D Rotary Cell Culture System (RCCS) for deriving inner ear organoids from hPSCs. We show RCCS-derived organoids recapitulate stages of inner ear development and give rise to an enriched population of hair cells displaying vestibular-like morphological and physiological phenotypes, which resemble developing human fetal inner ear hair cells as well as the presence of accessory otoconia-like structures. These results show that hPSC-derived organoids can generate complex inner ear structural features and be a resource to study inner ear development.

13.
Hear Res ; 350: 122-132, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28463805

RESUMO

In vitro cultures provide a valuable tool in studies examining the survival, morphology and function of cells in the auditory system. Primary cultures of primary auditory neurons have most notably provided critical insights into the role of neurotrophins in cell survival and morphology. Functional studies have also utilized in vitro models to study neuronal physiology and the ion channels that dictate these patterns of activity. Here we examine what influence time-in-culture has on the activity of primary auditory neurons, and how this affects our interpretation of neurotrophin and antibiotic-mediated effects in this population. Using dissociated cell culture we analyzed whole-cell patch-clamp recordings of spiral ganglion neurons grown in the presence or absence of neurotrophins and/or penicillin and streptomycin for 1-3 days in vitro. Firing threshold decreased, and both action potential number and latency increased over time regardless of treatment, whilst input resistance was lowest where neurotrophins were present. Differences in firing properties were seen with neurotrophin concentration but were not consistently maintained over the 3 days in vitro. The exclusion of antibiotics from culture media influenced most firing properties at 1 day in vitro in both untreated and neurotrophin-treated conditions. The only difference still present at 3 days was an increase in input resistance in neurotrophin-treated neurons. These results highlight the potential of neurotrophins and antibiotics to influence neural firing patterns in vitro in a time-dependent manner, and advise the careful consideration of their impact on SGN function in future studies.


Assuntos
Antibacterianos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Nervo Coclear/efeitos dos fármacos , Fatores de Crescimento Neural/farmacologia , Penicilinas/farmacologia , Gânglio Espiral da Cóclea/efeitos dos fármacos , Estreptomicina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Células Cultivadas , Nervo Coclear/metabolismo , Relação Dose-Resposta a Droga , Humanos , Neurotrofina 3 , Cultura Primária de Células , Ratos Wistar , Tempo de Reação/efeitos dos fármacos , Gânglio Espiral da Cóclea/metabolismo , Fatores de Tempo
15.
Stem Cells Int ; 2016: 1781202, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26966437

RESUMO

Induced pluripotent stem cells (iPSCs) may serve as an autologous source of replacement neurons in the injured cochlea, if they can be successfully differentiated and reconnected with residual elements in the damaged auditory system. Here, we explored the potential of hiPSC-derived neurons to innervate early postnatal hair cells, using established in vitro assays. We compared two hiPSC lines against a well-characterized hESC line. After ten days' coculture in vitro, hiPSC-derived neural processes contacted inner and outer hair cells in whole cochlear explant cultures. Neural processes from hiPSC-derived neurons also made contact with hair cells in denervated sensory epithelia explants and expressed synapsin at these points of contact. Interestingly, hiPSC-derived neurons cocultured with hair cells at an early stage of differentiation formed synapses with a higher number of hair cells, compared to hiPSC-derived neurons cocultured at a later stage of differentiation. Notable differences in the innervation potentials of the hiPSC-derived neurons were also observed and variations existed between the hiPSC lines in their innervation efficiencies. Collectively, these data illustrate the promise of hiPSCs for auditory neuron replacement and highlight the need to develop methods to mitigate variabilities observed amongst hiPSC lines, in order to achieve reliable clinical improvements for patients.

16.
Sci Rep ; 6: 30552, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27506453

RESUMO

Optic neuropathies are characterised by a loss of retinal ganglion cells (RGCs) that lead to vision impairment. Development of cell therapy requires a better understanding of the signals that direct stem cells into RGCs. Human embryonic stem cells (hESCs) represent an unlimited cellular source for generation of human RGCs in vitro. In this study, we present a 45-day protocol that utilises magnetic activated cell sorting to generate enriched population of RGCs via stepwise retinal differentiation using hESCs. We performed an extensive characterization of these stem cell-derived RGCs by examining the gene and protein expressions of a panel of neural/RGC markers. Furthermore, whole transcriptome analysis demonstrated similarity of the hESC-derived RGCs to human adult RGCs. The enriched hESC-RGCs possess long axons, functional electrophysiological profiles and axonal transport of mitochondria, suggestive of maturity. In summary, this RGC differentiation protocol can generate an enriched population of functional RGCs from hESCs, allowing future studies on disease modeling of optic neuropathies and development of cell therapies.


Assuntos
Separação Celular/métodos , Células-Tronco Embrionárias Humanas/citologia , Células Ganglionares da Retina/citologia , Biomarcadores/metabolismo , Diferenciação Celular , Células Cultivadas , Perfilação da Expressão Gênica , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Campos Magnéticos , Células Ganglionares da Retina/metabolismo
17.
Stem Cell Res ; 12(1): 241-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24280418

RESUMO

In severe cases of sensorineural hearing loss where the numbers of auditory neurons are significantly depleted, stem cell-derived neurons may provide a potential source of replacement cells. The success of such a therapy relies upon producing a population of functional neurons from stem cells, to enable precise encoding of sound information to the brainstem. Using our established differentiation assay to produce sensory neurons from human stem cells, patch-clamp recordings indicated that all neurons examined generated action potentials and displayed both transient sodium and sustained potassium currents. Stem cell-derived neurons reliably entrained to stimuli up to 20 pulses per second (pps), with 50% entrainment at 50 pps. A comparison with cultured primary auditory neurons indicated similar firing precision during low-frequency stimuli, but significant differences after 50 pps due to differences in action potential latency and width. The firing properties of stem cell-derived neurons were also considered relative to time in culture (31-56 days) and revealed no change in resting membrane potential, threshold or firing latency over time. Thus, while stem cell-derived neurons did not entrain to high frequency stimulation as effectively as mammalian auditory neurons, their electrical phenotype was stable in culture and consistent with that reported for embryonic auditory neurons.


Assuntos
Células-Tronco Embrionárias/citologia , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/fisiologia , Diferenciação Celular , Linhagem Celular , Fenômenos Eletrofisiológicos , Células-Tronco Embrionárias/fisiologia , Humanos , Técnicas de Patch-Clamp , Células Receptoras Sensoriais/metabolismo , Células-Tronco/citologia , Células-Tronco/fisiologia
18.
J Neural Eng ; 11(6): 065001, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25420002

RESUMO

Hearing loss is an increasing problem for a substantial number of people and, with an aging population, the incidence and severity of hearing loss will become more significant over time. There are very few therapies currently available to treat hearing loss, and so the development of new therapeutic strategies for hearing impaired individuals is of paramount importance to address this unmet clinical need. Most forms of hearing loss are progressive in nature and therefore an opportunity exists to develop novel therapeutic approaches to slow or halt hearing loss progression, or even repair or replace lost hearing function. Numerous emerging technologies have potential as therapeutic options. This paper details the potential of cell- and gene-based therapies to provide therapeutic agents to protect sensory and neural cells from various insults known to cause hearing loss; explores the potential of replacing lost sensory and nerve cells using gene and stem cell therapy; and describes the considerations for clinical translation and the challenges that need to be overcome.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/tendências , Sistemas de Liberação de Medicamentos/tendências , Terapia Genética/tendências , Perda Auditiva/terapia , Animais , Terapia Baseada em Transplante de Células e Tecidos/métodos , Cóclea/efeitos dos fármacos , Cóclea/patologia , Sistemas de Liberação de Medicamentos/métodos , Terapia Genética/métodos , Perda Auditiva/diagnóstico , Humanos , Transplante de Células-Tronco/métodos , Resultado do Tratamento
19.
PLoS One ; 9(7): e102077, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25036727

RESUMO

The degeneration of hair cells in the mammalian cochlea results in permanent sensorineural hearing loss. This study aimed to promote the regeneration of sensory hair cells in the mature cochlea and their reconnection with auditory neurons through the introduction of ATOH1, a transcription factor known to be necessary for hair cell development, and the introduction of neurotrophic factors. Adenoviral vectors containing ATOH1 alone, or with neurotrophin-3 and brain derived neurotrophic factor were injected into the lower basal scala media of guinea pig cochleae four days post ototoxic deafening. Guinea pigs treated with ATOH1 gene therapy, alone, had a significantly greater number of cells expressing hair cell markers compared to the contralateral non-treated cochlea when examined 3 weeks post-treatment. This increase, however, did not result in a commensurate improvement in hearing thresholds, nor was there an increase in synaptic ribbons, as measured by CtBP2 puncta after ATOH1 treatment alone, or when combined with neurotrophins. However, hair cell formation and synaptogenesis after co-treatment with ATOH1 and neurotrophic factors remain inconclusive as viral transduction was reduced due to the halving of viral titres when the samples were combined. Collectively, these data suggest that, whilst ATOH1 alone can drive non-sensory cells towards an immature sensory hair cell phenotype in the mature cochlea, this does not result in functional improvements after aminoglycoside-induced deafness.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Surdez/fisiopatologia , Surdez/terapia , Terapia Genética , Células Ciliadas Auditivas/fisiologia , Regeneração/genética , Animais , Surdez/genética , Surdez/patologia , Feminino , Cobaias , Células Ciliadas Auditivas/patologia , Audição/genética , Masculino , Camundongos , Sinapses/fisiologia
20.
Biores Open Access ; 3(4): 162-75, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25126480

RESUMO

Emerging therapies for sensorineural hearing loss include replacing damaged auditory neurons (ANs) using stem cells. Ultimately, it is important that these replacement cells can be patient-matched to avoid immunorejection. As human induced pluripotent stem cells (hiPSCs) can be obtained directly from the patient, they offer an opportunity to generate patient-matched neurons for transplantation. Here, we used an established neural induction protocol to differentiate two hiPSC lines (iPS1 and iPS2) and one human embryonic stem cell line (hESC; H9) toward a neurosensory lineage in vitro. Immunocytochemistry and qRT-PCR were used to analyze the expression of key markers involved in AN development at defined time points of differentiation. The hiPSC- and hESC-derived neurosensory progenitors expressed the dorsal hindbrain marker (PAX7), otic placodal marker (PAX2), proneurosensory marker (SOX2), ganglion neuronal markers (NEUROD1, BRN3A, ISLET1, ßIII-tubulin, Neurofilament kDa 160), and sensory AN markers (GATA3 and VGLUT1) over the time course examined. The hiPSC- and hESC-derived neurosensory progenitors had the highest expression levels of the sensory neural markers at 35 days in vitro. Furthermore, the neurons generated from this assay were found to be electrically active. While all cell lines analyzed produced functional neurosensory-like progenitors, variabilities in the levels of marker expression were observed between hiPSC lines and within samples of the same cell line, when compared with the hESC controls. Overall, these findings indicate that this neural assay was capable of differentiating hiPSCs toward a neurosensory lineage but emphasize the need for improving the consistency in the differentiation of hiPSCs into the required lineages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA