RESUMO
A new targeting chemotherapeutic agent, Pt-Mal-LHRH, was synthesized by linking activated cisplatin to luteinizing hormone releasing hormone (LHRH). The compound's efficacy and selectivity toward 4T1 breast cancer cells were evaluated. Carboplatin was selected as the comparative platinum complex, since the Pt-Mal-LHRH malonate linker chelates platinum in a similar manner to carboplatin. Breast cancer and normal cell viability were analyzed by an MTT assay comparing Pt-Mal-LHRH with carboplatin. Cells were also treated with either Pt-Mal-LHRH or carboplatin to evaluate platinum uptake by ICP-MS and cell migration using an in vitro scratch-migration assay. Tumor volume and metastasis were evaluated using an in vivo 4T1 mouse tumor model. Mice were administered Pt-Mal-LHRH (carboplatin molar equivalent dosage) through ip injection and compared to those treated with carboplatin (5 (mg/kg)/week), no treatment, and LHRH plus carboplatin (unbound) controls. An MTT assay showed a reduction in cell viability (p < 0.01) in 4T1 and MDA-MB-231 breast cancer cells treated with Pt-Mal-LHRH compared to carboplatin. Pt-Mal-LHRH was confirmed to be cytotoxic by flow cytometry using a propidium iodide stain. Pt-Mal-LHRH displayed a 20-fold increase in 4T1 cellular uptake compared to carboplatin. There was a decrease (p < 0.0001) in 4T1 cell viability compared to 3T3 normal fibroblast cells. Treatment with Pt-Mal-LHRH also resulted in a significant decrease in cell-migration compared to carboplatin. In vivo testing found a significant reduction in tumor volume (p < 0.05) and metastatic tumor colonization in the lungs with Pt-Mal-LHRH compared to carboplatin. There was a slight decrease in lung weight and no difference in liver weight between treatment groups. Together, our data indicate that Pt-Mal-LHRH is a more potent and selective chemotherapeutic agent than untargeted carboplatin.
Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Mama/efeitos dos fármacos , Cisplatino/uso terapêutico , Sistemas de Liberação de Medicamentos , Hormônio Liberador de Gonadotropina/uso terapêutico , Receptores LHRH/metabolismo , Células 3T3 , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacocinética , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Cisplatino/administração & dosagem , Cisplatino/química , Cisplatino/farmacocinética , Feminino , Hormônio Liberador de Gonadotropina/administração & dosagem , Hormônio Liberador de Gonadotropina/química , Hormônio Liberador de Gonadotropina/farmacocinética , Humanos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Regulação para Cima/efeitos dos fármacosRESUMO
The matrix metalloproteinases (MMPs) exhibit a broad array of activities, some catalytic and some non-catalytic in nature. An overall lack of selectivity has rendered small molecule, active site targeted MMP inhibitors problematic in execution. Inhibitors that favor few or individual members of the MMP family often take advantage of interactions outside the enzyme active site. We presently focus on peptide-based MMP inhibitors and probes that do not incorporate conventional Zn²âº binding groups. In some cases, these inhibitors and probes function by binding only secondary binding sites (exosites), while others bind both exosites and the active site. A myriad of MMP mediated-activities beyond selective catalysis can be inhibited by peptides, particularly cell adhesion, proliferation, motility, and invasion. Selective MMP binding peptides comprise highly customizable, unique imaging agents. Areas of needed improvement for MMP targeting peptides include binding affinity and stability.
Assuntos
Inibidores de Metaloproteinases de Matriz , Metaloproteinases da Matriz/química , Peptídeos , Sítios de Ligação , Domínio Catalítico , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Inibidores de Metaloproteinases de Matriz/síntese química , Inibidores de Metaloproteinases de Matriz/química , Inibidores de Metaloproteinases de Matriz/metabolismo , Metaloproteinases da Matriz/metabolismo , Peptídeos/síntese química , Peptídeos/química , Peptídeos/metabolismo , Conformação Proteica , Especificidade por Substrato , Zinco/químicaRESUMO
Currently, 186/188Re and 99mTc are widely used radionuclides for cancer detection and diagnosis. New advancements in modalities and targeting strategies of radiopharmaceuticals will provide an opportunity to enhance imagery and detection of smaller colonies of cancer cells while lowering false-positive diagnoses. To understand the chemistry of agents derived from fac-[99mTc(CO)3(H2O)3]+ species, the nonradioactive [Re(CO)3(H2O)3]+ analogue was used. We have designed and synthesized Re-Acdien-LHRH, Re-Acdien-peg-LHRH, and a radiolabeled 99mTc-Acdien-LHRH (rhenium- and technetium-luteinizing hormone-releasing hormone) conjugates using a tridentate linker to detect cancers overexpressing the LHRH receptor. Re-Acdien-LHRH and Re-Acdien-peg-LHRH were synthesized from non-PEGylated and PEGylated LHRH-Acdien, respectively. Cellular uptake of the compounds 99mTc-Acdien-LHRH, Re-Acdien-LHRH, and Re-Acdien-peg-LHRH was found to be significantly enhanced compared to that of untargeted 99mTc alone and unlabeled [Re(CO)3(H2O)3]+. In addition, the conjugate compounds showed no difference in cellular toxicity compared to untargeted 99mTc alone or unlabeled [Re(CO)3(H2O)3]+. Further, a competition assay using LHRH indicated selective targeting of Re-Acdien-peg-LHRH toward the LHRH receptor (p < 0.05) compared to that of [Re(CO)3(H2O)3]+ alone. Together, our data show the design paradigm and synthesis of targeting radionuclides using the LHRH peptide. Our data suggests that utilizing the LHRH peptide can lead to selective targeting and diagnosis of breast cancers expressing the LHRH receptor.
RESUMO
Besides various side effects caused by platinum anticancer drugs, they are not efficiently absorbed by the tumor cells. Two Pt-peptide conjugates; cyclic mPeg-CNGRC-Pt (7) and cyclic mPeg-CNGRC-Pten (8) bearing the Asn-Gly-Arg (NGR) targeting sequence, a malonoyl linker, and low molecular weight miniPEG groups have been synthesized. The platinum ligand was attached to the peptide via the carboxylic end of the malonate group at the end of the peptide. The pegylated peptide is nontoxic and highly soluble in water. Platinum conjugates synthesized using the pegylated peptides are also water-soluble with reduced or eliminated peptide immunogenicity. The choice of carboplatin as our untargeted platinum complex was due to the fact that the malonate linker chelates platinum in a manner similar to that of carboplatin. Cell toxicity assay and competition assay on the PC-3 cells (CD13 positive receptors) revealed selective delivery and destruction of PC-3 cells using targeted Pt-peptide conjugates 7 and 8 significantly more than untargeted carboplatin. Platinum uptake on PC-3 cells was 12-fold more for conjugate 7 and 3-fold more for conjugate 8 compared to that of the untargeted carboplatin, indicating selective activation of the CD13 receptors and delivery of the conjugates to CD13 positive cells. Further analysis on effects of conjugates 7 and 8 on PC-3 cells using caspase-3/7, fluorescence microscopy, and DNA fragmentation confirmed that the cells were dying by apoptosis.
Assuntos
Antineoplásicos , Apoptose/efeitos dos fármacos , Carboplatina/metabolismo , Fragmentação do DNA/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Oligopeptídeos , Platina , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antígenos CD13/metabolismo , Carboplatina/farmacologia , Caspases/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Terapia de Alvo Molecular , Oligopeptídeos/síntese química , Oligopeptídeos/metabolismo , Oligopeptídeos/farmacologia , Platina/química , Platina/metabolismo , Platina/farmacologiaRESUMO
Cancer treatment by chemotherapy is typically accompanied by deleterious side effects, attributed to the toxic action of chemotherapeutics on proliferating cells from nontumor tissues. The cell surface proteoglycan CD44 has been recognized as a cancer stem cell marker. The present study has examined CD44 targeting as a way to selectively deliver therapeutic agents encapsulated inside colloidal delivery systems. CD44/chondroitin sulfate proteoglycan binds to a triple-helical sequence derived from type IV collagen, α1(IV)1263-1277. We have assembled a peptide-amphiphile (PA) in which α1(IV)1263-1277 was sandwiched between 4 repeats of Gly-Pro-4-hydroxyproline and conjugated to palmitic acid. The PA was incorporated into liposomes composed of DSPG, DSPC, cholesterol, and DSPE-PEG-2000 (1 : 4 : 5 : 0.5). Doxorubicin-(DOX-)loaded liposomes with and without 10% α1(IV)1263-1277 PA were found to exhibit similar stability profiles. Incubation of DOX-loaded targeted liposomes with metastatic melanoma M14#5 and M15#11 cells and BJ fibroblasts resulted in IC(50) values of 9.8, 9.3, and >100 µM, respectively. Nontargeted liposomes were considerably less efficacious for M14#5 cells. In the CD44(+) B16F10 mouse melanoma model, CD44-targeted liposomes reduced the tumor size to 60% of that of the untreated control, whereas nontargeted liposomes were ineffective. These results suggest that PA targeted liposomes may represent a new class of nanotechnology-based drug delivery systems.