Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biophys J ; 123(4): 464-477, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38204165

RESUMO

Thrombus formation on a damaged vessel wall can lead to the formation of a stable occlusive/subocclusive clot or unstable embolizing thrombus. Both outcomes can cause significant health damage. The mechanisms that regulate maximum thrombus size, its stability, and embolization in both micro- and macrocirculation are poorly understood. To investigate the impact of flow and intrathrombus forces on the stability of homogeneous and heterogeneous platelet thrombi in a wide range of thrombus geometries, critical interplatelet forces, vessel diameters, and hydrodynamic conditions, we took advantage of the recently developed in silico models. To perform analysis of thrombus stability/embolization in arterioles, we used our previously developed particle-based 2D model with a single-platelet resolution. Its results and predictions were further extended to a 3D case and the large spatial scales of arteries using novel particle-based and continuum 3D models. We found a robust quantitative parameter, termed force balance ratio, which quantifies the balance between destabilizing hydrodynamic and stabilizing interplatelet forces. This parameter predicts whether a homogeneous thrombus (or the shell of a heterogeneous thrombus) with a particular value of critical interplatelet forces will embolize under given hydrodynamic conditions. Our simulations also predict that, for a given magnitude of critical interplatelet forces, the longer thrombi are more stable than the shorter ones. Furthermore, the aggregates formed on top of the severe stenosis are more stable than thrombi formed at moderate stenosis. Taken together, our results give new insights into the interplay between critical interplatelet forces, local hydrodynamics, and overall thrombus stability against the flow.


Assuntos
Trombose , Humanos , Constrição Patológica , Plaquetas/fisiologia , Artérias
2.
Arterioscler Thromb Vasc Biol ; 39(1): 37-47, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30580561

RESUMO

Objective- After activation at the site of vascular injury, platelets differentiate into 2 subpopulations, exhibiting either proaggregatory or procoagulant phenotype. Although the functional role of proaggregatory platelets is well established, the physiological significance of procoagulant platelets, the dynamics of their formation, and spatial distribution in thrombus remain elusive. Approach and Results- Using transmission electron microscopy and fluorescence microscopy of arterial thrombi formed in vivo after ferric chloride-induced injury of carotid artery or mechanical injury of abdominal aorta in mice, we demonstrate that procoagulant platelets are located at the periphery of the formed thrombi. Real-time cell tracking during thrombus formation ex vivo revealed that procoagulant platelets originate from different locations within the thrombus and subsequently translocate towards its periphery. Such redistribution of procoagulant platelets was followed by generation of fibrin at thrombus surface. Using in silico model, we show that the outward translocation of procoagulant platelets can be driven by the contraction of the forming thrombi, which mechanically expels these nonaggregating cells to thrombus periphery. In line with the suggested mechanism, procoagulant platelets failed to translocate and remained inside the thrombi formed ex vivo in blood derived from nonmuscle myosin ( MYH9)-deficient mice. Ring-like distribution of procoagulant platelets and fibrin around the thrombus observed with blood of humans and wild-type mice was not present in thrombi of MYH9-knockout mice, confirming a major role of thrombus contraction in this phenomenon. Conclusions- Contraction of arterial thrombus is responsible for the mechanical extrusion of procoagulant platelets to its periphery, leading to heterogeneous structure of thrombus exterior.


Assuntos
Coagulação Sanguínea/fisiologia , Plaquetas/fisiologia , Trombose/etiologia , Animais , Movimento Celular , Fibrina/análise , Camundongos , Agregação Plaquetária/fisiologia
4.
Hamostaseologie ; 40(4): 524-535, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32916753

RESUMO

Computational physiology, i.e., reproduction of physiological (and, by extension, pathophysiological) processes in silico, could be considered one of the major goals in computational biology. One might use computers to simulate molecular interactions, enzyme kinetics, gene expression, or whole networks of biochemical reactions, but it is (patho)physiological meaning that is usually the meaningful goal of the research even when a single enzyme is its subject. Although exponential rise in the use of computational and mathematical models in the field of hemostasis and thrombosis began in the 1980s (first for blood coagulation, then for platelet adhesion, and finally for platelet signal transduction), the majority of their successful applications are still focused on simulating the elements of the hemostatic system rather than the total (patho)physiological response in situ. Here we discuss the state of the art, the state of the progress toward the efficient "virtual thrombus formation," and what one can already get from the existing models.


Assuntos
Biologia Computacional/métodos , Hemostasia/fisiologia , Trombose/metabolismo , Simulação por Computador , Humanos , Modelos Teóricos
5.
ACS Appl Mater Interfaces ; 10(43): 36764-36775, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30299938

RESUMO

Mortality and disabilities as outcomes of cardiovascular diseases are primarily related to blood clotting. Optimization of thrombolytic drugs is aimed at the prevention of side effects (in particular, bleeding) associated with a disbalance between coagulation and anticoagulation caused by systemically administered agents. Minimally invasive and efficient approaches to deliver the thrombolytic agent to the site of clot formation are needed. Herein, we report a novel nanocomposite prepared by heparin-mediated cross-linking of urokinase with magnetite nanoparticles (MNPs@uPA). We showed that heparin within the composition evoked no inhibitory effects on urokinase activity. Importantly, the magneto-control further increased the thrombolytic efficacy of the composition. Using our nanocomposition, we demonstrated efficient lysis of experimental clots in vitro and in animal vessels followed by complete restoration of blood flow. No sustained toxicity or hemorrhagic complications were registered in rats and rabbits after single bolus i.v. injection of therapeutic doses of MNPs@uPA. We conclude that MNPs@uPA is a prototype of easy-to-prepare, inexpensive, biocompatible, and noninvasive thrombolytic nanomedicines potentially useful in the treatment of blood clotting.


Assuntos
Sistemas de Liberação de Medicamentos , Óxido Ferroso-Férrico/química , Nanocompostos/química , Terapia Trombolítica/métodos , Ativador de Plasminogênio Tipo Uroquinase/química , Animais , Artérias Carótidas/patologia , Reagentes de Ligações Cruzadas/química , Desenho de Fármacos , Artéria Femoral/metabolismo , Fibrina/química , Fibrinolíticos/administração & dosagem , Humanos , Nanopartículas de Magnetita/uso terapêutico , Coelhos , Ratos , Eletricidade Estática , Distribuição Tecidual , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA