RESUMO
The present study was conducted to quantify the daily intake and target hazard quotient of four essential elements, namely, chromium, cobalt, nickel, and copper, and four toxic trace elements, mercury, cadmium, lead, and arsenic. Thirty food items were assigned to five food categories (seeds, leaves, powders, beans, and fruits) and analyzed using inductively coupled plasma-mass spectrometry. Factor analysis after principal component extraction revealed common metal patterns in all foodstuffs, and using hierarchical cluster analysis, an association map was created to illustrate their similarity. The results indicate that the internationally recommended dietary allowance was exceeded for Cu and Cr in 27 and 29 foodstuffs, respectively. According to the tolerable upper level for Ni and Cu, everyday consumption of these elements through repeated consumption of seeds (fennel, opium poppy, and cannabis) and fruits (almond) can have adverse health effects. Moreover, a robust correlation between Cu and As (p < 0.001) was established when all samples were analyzed. Principal component analysis (PCA) demonstrated an association between Pb, As, Co, and Ni in one group and Cr, Cu, Hg, and Cd in a second group, comprising 56.85% of the total variance. For all elements investigated, the cancer risk index was within safe limits, highlighting that lifetime consumption does not increase the risk of carcinogens.
Assuntos
Arsênio/análise , Cádmio/análise , Cromo/análise , Cobalto/análise , Cobre/análise , Chumbo/análise , Mercúrio/análise , Níquel/análise , Espectrofotometria Atômica/métodos , Supermercados , Oligoelementos/análise , Humanos , RomêniaRESUMO
Silver nanoparticles synthesized using plant extracts as reducing and capping agents showed various biological activities. In the present study, colloidal silver nanoparticle solutions were produced from the aqueous extracts of Picea abies and Pinus nigra bark. The phenolic profile of bark extracts was analyzed by liquid chromatography coupled to mass spectrometry. The synthesis of silver nanoparticles was monitored using UV-Vis spectroscopy by measuring the Surface Plasmon Resonance band. Silver nanoparticles were characterized by attenuated total reflection Fourier transform infrared spectroscopy, Raman spectroscopy, dynamic light scattering, scanning electron microscopy, energy dispersive X-ray and transmission electron microscopy analyses. The antimicrobial and cytogenotoxic effects of silver nanoparticles were evaluated by disk diffusion and Allium cepa assays, respectively. Picea abies and Pinus nigra bark extract derived silver nanoparticles were spherical (mean hydrodynamic diameters of 78.48 and 77.66 nm, respectively) and well dispersed, having a narrow particle size distribution (polydispersity index values of 0.334 and 0.224, respectively) and good stability (zeta potential values of -10.8 and -14.6 mV, respectively). Silver nanoparticles showed stronger antibacterial, antifungal, and antimitotic effects than the bark extracts used for their synthesis. Silver nanoparticles obtained in the present study are promising candidates for the development of novel formulations with various therapeutic applications.
Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Nanopartículas Metálicas/química , Casca de Planta/química , Extratos Vegetais/química , Prata/química , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Fenômenos Químicos , Técnicas de Química Sintética , Química Verde , Nanopartículas Metálicas/ultraestrutura , Fenóis/química , Análise EspectralRESUMO
The aim is to introduce and characterize a new experimental demonstrative model contributing to the increase of measurement accuracy, in terms of minimum detectable activity (MDA) and background reduction, for the analysis of samples having low concentrations in tritium and radiocarbon on Quantulus 1220. The clue is related to the qualitative and quantitative differences between tritium and carbon-14 inventories of the pulp used to manufacture the cups involved in noncatalytic combustion of samples by flame oxidation method. The quality of the experimental results depends on the temporal origin of the wood from which the pulp/cellulose was extracted/purified, the specific inventory contributing to the threshold level of the MDA for the beta-emitting radionuclide to be investigated. Finally, the aim is to create and to use such a 100% old cellulose combustion cups for determining low concentrations of these radionuclides. It may be obtained by an adapted technology following the literature data and may be recommended for routine analyses of environmental samples coming from areas with no nuclear or minor nuclear influences, and also for low-level biological samples. This first attempt resulted in improvement of measurement performances up to 400% for carbon-14 and by approximately 50% for tritium.
Assuntos
Celulose/análise , Meio Ambiente , Limite de Detecção , Oxidantes/química , Automação , Celulose/químicaRESUMO
Lithium (Li) is present in human nutrition based on food intake, and several studies recommend it for treating mood disorders, even if the biological proprieties and biochemical mechanisms represent the basis for its use as an essential element. The Li content was evaluated using the inductively coupled plasma mass spectrometry technique (ICP-MS) in 1071 food and beverage samples from the Romanian market. The results show that Li had a decreasing mean concentration in the food samples as follows: vegetables leafy > bulbous > fructose > leguminous > egg whites > root vegetables > milk products > egg yolks > meats. Approximately a quarter of all data from each dataset category was extreme values (range between the third quartile and maximum value), with only 10% below the detection limit. Mean Li concentration indicated higher values in red wine, white wines, beers, and fruit juice and lower in ciders and bottled waters. A particular interest was addressed to plants for teas and coffee seeds, which showed narrow amounts of Li. For both food and beverages, two similar matrices, including egg whites and yolks and white and red wines, were found to have significant differences, which explains the high variability of Li uptake in various matrices. For 99.65% of the analyzed samples, the estimated daily intake of Li was below the provisional subchronic and chronic reference dose (2 µg/kgbw/day) for adverse effects in several organs and systems. Even so, a risk occurs in consuming bulbous vegetables (Li > 13.47 mg/kg) and fructose solano vegetables (Li > 11.33 mg/kg). The present study's findings indicate that ingesting most of the analyzed beverages and food samples could be considered safe, even if future studies regarding Li content, nutritional aspects, and human cohort diseases must be conducted.
RESUMO
Background: Increasing lithium (Li) demand worldwide due to its properties and role in renewable energy will raise water reservoir pollution and side effects on human health. Divergent results regarding Li concentration in water and affective disorders are found in the literature, which is why regional reports are expected. Objective: The present study evaluated the occurrence and human health risks resulting from oral exposure, respectively, and the relationship between alkali metals (Li, Na, and K) and minerals (Mg, Ca) in balanced purified water (bottled) and spring water. Methods: The ICP-MS technique was used to measure a national database with 53 bottled and 42 spring water samples randomly selected. One-way ANOVA, Pearson correlation, and HCA analysis were applied to assess the possible relationship between metals in water. The possible side effects of Li poisoning of water resources on human health have been evaluated using the Estimated Daily Intake Index (EDI) and Total Hazard Quotient (THQ). Results: The toxic metals (As, Hg, and Pb) were measured, and the results indicate values above the detection limit of 22.3% of samples in the case of lead but not exceeding the safety limits. Depending on the water sources, such as bottled and spring water, the Li concentration varied between 0.06-1,557 and 0.09-984% µg/L. We found a strong positive correlation between Li and Na and Mg, varying between bottled and spring waters (p% <%0.001). Li exceeded the limit set by the Health-Based Screening Level (HBSL) in 41.37 and 19% of bottled and spring water samples. The oral reference doses (p-RfDs) for the noncancer assessment of daily oral exposure effects for a human lifetime exceeded threshold values. The THQ index shows potential adverse health effects, requiring further investigations and remedial actions in 27.58% of approved bottled waters and 2.38% of spring waters. Conclusion: We can conclude that water is safe based on the Li concentration found in drinking water and supported by a gap in strict regulations regarding human Li ingestion. The present study can serve decision-makers and represent a starting database with metals of interest for further clinical studies. Decision-makers can also use it to find solutions for sustainable management of clean and safe drinking water.
Assuntos
Água Potável , Lítio , Sódio , Poluentes Químicos da Água , Humanos , Água Potável/análise , Água Potável/química , Lítio/análise , Romênia , Sódio/análise , Poluentes Químicos da Água/análise , Medição de Risco , Magnésio/análise , Cálcio/análise , Potássio/análiseRESUMO
Increase in temperature and decrease in precipitation pose a major future challenge for sustainable ecosystem management in Romania. To understand ecosystem response and the wider social consequences of environmental change, we constructed a 396-year long (1615-2010) drought sensitive tree-ring width chronology (TRW) of Pinus nigra var. banatica (Georg. et Ion.) growing on steep slopes and shallow organic soil. We established a statistical relationship between TRW and two meteorological parameters-monthly sum of precipitation (PP) and standardised precipitation index (SPI). PP and SPI correlate significantly with TRW (r = 0.54 and 0.58) and are stable in time. Rigorous statistical tests, which measure the accuracy and prediction ability of the model, were all significant. SPI was eventually reconstructed back to 1688, with extreme dry and wet years identified using the percentile method. By means of reconstruction, we identified two so far unknown extremely dry years in Romania--1725 and 1782. Those 2 years are almost as dry as 1946, which was known as the "year of great famine." Since no historical documents for these 2 years were available in local archives, we compared the results with those from neighbouring countries and discovered that both years were extremely dry in the wider region (Slovakia, Hungary, Anatolia, Syria, and Turkey). While the 1800-1900 period was relatively mild, with only two moderately extreme years as far as weather is concerned, the 1900-2009 period was highly salient owing to the very high number of wet and dry extremes--five extremely wet and three extremely dry events (one of them in 1946) were identified.
Assuntos
Interpretação Estatística de Dados , Secas/estatística & dados numéricos , Modelos Estatísticos , Pinus/anatomia & histologia , Pinus/crescimento & desenvolvimento , Chuva , Estações do Ano , Simulação por Computador , Ecossistema , Estatística como Assunto , TurquiaRESUMO
The climate warming trend challenges the chemical risk associated with wine production worldwide. The present study investigated the possible difference between chemical wine profile during the drought year 2012 compared to the post-drought year 2013. Toxic metals (Cd and Pb), microelements (Mn, Ni, Zn, Al, Ba, and Cu), macroelements (Na, Mg, K, Ca, and P), isotopic ratios (87Sr/86Sr and 206Pb/207Pb), stable isotopes (δ18O, δ13C, (D/H)I, and (D/H)II), and climatic data were analyzed. The multivariate technique, correlation analysis, factor analysis, partial least squares-discriminant analysis, and hierarchical cluster analysis were used for data interpretation. The maximum temperature had a maximum difference when comparing data year apart. Indeed, extreme droughts were noted in only the spring and early summer of 2012 and in 2013, which increased the mean value of ground frost days. The microelements, macroelements, and Pb presented extreme effects in 2012, emphasizing more variability in terms of the type of wine. Extremely high Cd values were found in the wine samples analyzed, at up to 10.1 µg/L. The relationship between precipitation and δ18O from wine was complex, indicating grape formation under the systematic influence of the current year precipitation, and differences between years were noted. δ13C had disentangled values, with no differentiation between years, and when coupled with the deuterium-hydrogen ratio, it could sustain the hypothesis of possible adulteration. In the current analysis, the 87Sr/86Sr showed higher values than in other Romanian studies. The temperature had a strong positive correlation with Pb, while the ground frost day frequency correlated with both Pb and Cd toxic elements in the wine. Other significant relationships were disclosed between the chemical properties of wine and climate data. The multivariate statistical analysis indicated that heat stress had significant importance in the chemical profile of the wine, and the ground frost exceeded the influence of water stress, especially in Transylvania.
RESUMO
In addition to the naturopathic medicines based on the antiseptic, anti-inflammatory, anticancer, or antioxidant properties of plant extracts that have been capitalized upon through the pharmaceutical industry, the increasing interest of the food industry in this area requires potent new materials capable of supporting this market. This study aimed to evaluate the in vitro amino acid contents and antioxidant activities of ethanolic extracts from sixteen plants. Our results show high accumulated amino acid contents, mainly of proline, glutamic, and aspartic acid. The most consistent values of essential amino acids were isolated from T. officinale, U. dioica, C. majus, A. annua, and M. spicata. The results of the 2,2-diphenyl-1-pycrylhydrazyl (DPPH) radical scavenging assay indicate that R. officinalis was the most potent antioxidant, followed by four other extracts (in decreasing order): T. serpyllum, C. monogyna, S. officinalis, and M. koenigii. The network and principal component analyses found four natural groupings between samples based on DPPH free radical scavenging activity content. Each plant extracts' antioxidant action was discussed based on similar results found in the literature, and a lower capacity was observed for most species. An overall ranking of the analyzed plant species can be accomplished due to the range of experimental methods. The literature review revealed that these natural antioxidants represent the best side-effect-free alternatives to synthetic additives, especially in the food processing industry.
RESUMO
In recent years, phytofunctionalized AgNPs have attracted great interest due to their remarkable biological activities. In the present study, AgNPs were synthesized using Abies alba and Pinus sylvestris bark extracts. The chemical profile of these bark extracts was analyzed by LC-HRMS/MS. As a first step, the synthesis parameters (pH, AgNO3 concentration, ratio of bark extract and AgNO3, temperature, and reaction time) were optimized. The synthesized AgNPs were characterized by ATR-FTIR spectroscopy, DLS, SEM, EDX, and TEM. Their antioxidant, cytotoxic, and antibacterial properties were evaluated by the DPPH, ABTS, MTT, and broth microdilution assays, respectively. Abies alba and Pinus sylvestris bark extract-derived AgNPs were well-dispersed, spherical, small (average particle size of 9.92 and 24.49 nm, respectively), stable (zeta potential values of -10.9 and -10.8 mV, respectively), and cytotoxic to A-375 human malignant melanoma cells (IC50 = 2.40 ± 0.21 and 6.02 ± 0.61 µg/mL, respectively). The phytosynthesized AgNPs also showed antioxidant and antibacterial effects.
RESUMO
Heavy metal pollution of river freshwater environments currently raises significant concerns due to the toxic effects and the fact that heavy metal behavior is not fully understood. This study assessed the contamination level of eight heavy metals and trace elements (Cr, Ni, Cu, Zn, As, Pb, Cd, and Hg) in the surface sediments of 19 sites in 2018 during four periods (March, May, June, and October) in Olt River sediments. Multivariate statistical techniques were used, namely, one-way ANOVA, person product-moment correlation analysis, principal component analysis, hierarchical cluster analysis, and sediment quality indicators such as the contamination factor and pollution load index. The results demonstrated higher contents of Ni, Cu, Zn, As, Pb, Cd, and Hg, with values that were over 2.46, 4.40, 1.15, 8.28, 1.10, 1.53, and 3.71 times more, respectively, compared with the national quality standards for sediments. We observed a positive significant statistical correlation (p < 0.001) in March between elevation and Pb, Ni, Cu, Cr, and Zn and a negative correlation between Pb and elevation (p = 0.08). Intermetal associations were observed only in March, indicating a relationship with river discharge from spring. The PCA sustained mainly anthropogenic sources of heavy metals, which were also identified through correlation and cluster analyses. We noted significant differences between the Cr and Pb population means and variances (p < 0.001) for the data measured in March, May, June, and October. The contamination factor indicated that the pollution level of heavy metals was high and significant for As at 15 of the 19 sites. The pollution load index showed that over 89% of the sites were polluted by metals to various degrees during the four periods investigated. Our results improve the knowledge of anthropogenic versus natural origins of heavy metals in river surface sediments, which is extremely important in assessing environmental and human health risks and beneficial for decision-maker outcomes for national freshwater management plans.
RESUMO
Natural ecosystems are polluted with various contaminants, and among these heavy metals raise concerns due to their side effects on both environment and human health. An investigation was conducted on essential oil samples, comparing similar products between seven producers, and the results indicated a wide variation of metal content. The recommended limits imposed by European Union regulations for medicinal plants are exceeded only in Mentha × pipperita (Adams, 0.61 mg/kg). Except for Thymus vulgaris, the multivariate analysis showed a strong correlation between toxic and microelements (p < 0.001). We verified plant species−specific bioaccumulation patterns with non-metric multidimensional scaling analysis. The model showed that Adams, Doterra, Hypericum, and Steaua Divina essential oils originated from plants containing high micro and macroelement (Cu, Mn, Mg, Na) levels. We noted that the cancer risk values for Ni were the highest (2.02 × 10−9−7.89 × 10−7). Based on the target hazard quotient, three groups of elements were associated with a possible risk to human health, including As, Hg, and Cd in the first group, Cr, Mn, Ni, and Co in the second, and Zn and Al in the third. Additionally, the challenge of coupling inter-element relationships through a network plot analysis shows a considerable probability of associating toxic metals with micronutrients, which can address cumulative risks for human consumers.
Assuntos
Mercúrio , Metais Pesados , Óleos Voláteis , Ecossistema , Monitoramento Ambiental/métodos , Humanos , Mercúrio/análise , Medição de RiscoRESUMO
The concentrations of twelve heavy metals and trace elements (Cr, Mn, Co, Ni, Cu, As, Cd, Pb, Hg, Zn, Fe, and Al) in bed sediment and river freshwater that received sewage discharge, industrial wastewater inputs and mining residue were discussed. Spatial distribution, intra-annual trends and diffuse flux in 2019 in the middle and lower reaches of Olt River Basin (ORB) were investigated using inductively coupled mass spectrometry (ICP-MS) and atomic absorption spectroscopy (AAS). We applied correlation and principal component analysis (PCA) to quantify metal distribution relationship within environmental factors (pH, air temperature) and organic matter existing in the ORB. Moreover, the 87Sr/86Sr and 206Pb/207Pb isotope ratios analysis was employed to conclude the possible origin of the contamination. PCA analysis categorized metal presence in the four-component model, which explains 91% (May), 92% (July) and 93% (September) of the variance and indicates the potential origins of pollutants. The HCA and correlation analysis emphasized the relationship between trace elements, heavy metals in water and sediments and physicochemical characteristics of water. It was observed a high discrepancy in metal distribution between riverbed sediments and water body. In September, correlation indices highlighted sparse positive relationship with trace elements in water and mainly negative correlation values with trace elements from sediments. The origin of pollutants in sediments and water appear to be both natural and human-related activities. In all seasons increased the total exchangeable concentration of Ni, Cu and Zn in the sediments downstream sewage treatment plants and upstream of dams. The consideration of environmental factors and physicochemical characteristics of water is required to develop strategies for pollution management, assessment and mitigation in the actual condition of climate change. This study evaluated the heavy metals pollution in the Olt River Basin over three periods in 2019 under human-induced changes.
Assuntos
Metais Pesados , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Metais Pesados/análise , Romênia , Poluentes Químicos da Água/análiseRESUMO
Three gridded datasets containing interpolated daily and monthly precipitation and temperature values over the past five decades were tested against four tree-ring chronologies of oak (Quercus robur and Q. petraea). The objective of this research was to investigate the climate-growth relationship and whether the Pearson's product-moment correlation coefficients differ significantly if mean monthly precipitation and temperature data from the different climate databases, CRU, E-OBS and ROCADA are used. To this end, we selected two representative oak ecosystems in the South Carpathians, Romania, and analysed earlywood, latewood and tree-ring widths. Climate time series trends for the South Carpathians coldest, warmest days and wettest days were assessed with datasets from E-OBS and ROCADA, which differed in the density of their meteorological station network and their interpolation methods. The observed climatic parameters showed changes towards wetter conditions after the mid-1980s. For 1961-2013, E-OBS underestimated the mean daily temperature and daily precipitation compared with ROCADA. The results showed that higher extreme temperatures from January-March affected earlywood growth. In the investigated study region, latewood formation seemed to be affected by water availability mainly in May. Periods of drought associated with higher temperatures have limiting effects on tree growth, but these events are captured in different ways by each climate database analysed. Similarly, the results showed the discrepancy among datasets for earlywood and climate relationships. The results emphasize the importance of proper selection of climate data for assessing climate-tree growth relationships. For future dendroclimatological and dendroecological studies of oak in Romania, we recommend the ROCADA database, while E-OBS is recommended if an up-to-date climate dataset is needed.
Assuntos
Mudança Climática , Clima , Quercus , Secas , Ecossistema , Monitoramento Ambiental , Romênia , TemperaturaRESUMO
This study focuses on the climate growth drivers of Quercus robur L. (pedunculate oak) and Q. robur subsp. pedunculiflora K. Koch. (greyish oak), occurring in the biodiversity of three sites in southern Romania. We determined the degree of tolerance of the greyish oak, between the tardive and praecox varieties, to environmental stress, between 1951 and 2016. Total tree ring-width (RW), and earlywood (EW) and latewood (LW) measurements were subject of periodical and monthly climate-growth analysis. Our results revealed a moderate relationship between climate and tree-growth. A significant and positive relationship was observed between RW and previous growing season precipitation. Mean and minimum temperatures affected both positive and negative tree-rings during the growing season. We also observed that winter and spring represent key seasons for differentiating tardive from praecox varieties, affecting the intra-annual variability of ring-width, and EW and LW parameters. The correlation between the tree-ring measurements and daily climate data shows a clear offset of the starting growth between greyish oak varieties. A weak influence of stressors on tree-growth at the sites was observed through pointer year and resilience components analysis.
Assuntos
Monitoramento Ambiental/métodos , Quercus/crescimento & desenvolvimento , Clima , RomêniaRESUMO
Tree-ring information and climate response data were applied to investigate the potential of the Carpathian Mountains to influence tree-growth patterns. Recent studies reveal the importance of constructing a dense spatial network of oak tree-ring chronologies in this area, which may be the key to linking the North Central European and East Mediterranean tree records. We establish sixteen oak (Quercus robur L.) and sessile oak (Quercus petraea (Matt.) Liebl.) site chronologies along a longitudinal gradient (from 22.47 to 26.58 E) in Northern Romania in an attempt to elucidate the impact of climate on oak growth. Even with differences generated by interspecific features, habitats and climatic regimes, a common macroclimatic marker for the NW and NE sites was established by comparing two groups of chronologies separated by the Carpathian chain. We found that precipitation in April (P4) and June (P6) were the primary climate factors that affected tree growth in the NW region. For the NE region, the temperature in January (T1) and March (T3) and precipitation in May (P5) were revealed to be the major limiting climatic factors. The spatial variability of the correlation coefficients indicates a decreasing trend in correlation intensity with precipitation from NW to NE, particularly during the current growing season (March-July). Oak trees from the NW and NE regions have adapted to different local climatic conditions and only respond uniformly to severe climate events (e.g., the 1904 drought). The higher occurrence of extreme years during the 20th century, particularly in the NE region, was in accordance with the rise of precipitation variability in the current growing season. The changes in the tree-growth pattern and climatic response of the chronologies of the studied sites in the NW and NE regions were linked to the local climates induced by the Carpathian Mountains.
Assuntos
Clima , Quercus/crescimento & desenvolvimento , Adaptação Fisiológica , Secas , Romênia , Árvores/crescimento & desenvolvimentoRESUMO
Natural subalpine forests are considered to be sensitive to climate change, and forest characteristics are assumed to reflect the prevalent disturbance regime. We hypothesize that stand history determines different stand structures. Based on large full inventory datasets (including tree biometric data, spatial coordinates, tree age, and basal area increment) we assessed the size structure, tree recruitment dynamics and radial growth patterns in three permanent plots along an altitudinal gradient in a mixed coniferous forest (Picea abies and Pinus cembra) in the Eastern Carpathians. Both discrete disturbances (large scale or small scale) and chronic disturbances (climate change) were identified as drivers of stand structure development in the studied plots. A stand replacing wind disturbance generated a unimodal bell-shaped size and age distribution for both species characterized by a sharp increase in post-disturbance recruitment. By contrast, small-scale wind-caused gaps led to a negative exponential diameter distribution for spruce and a left-asymmetric unimodal for pine. Climate-driven infilling processes in the upper subalpine forest were reflected as J-shaped size and age distributions for both species, but with pine predating spruce. The growth patterns for both species demonstrated an increased basal area increment since the early 1900s, with an emphasis in the last few decades, irrespective of stand history. Pine demonstrated a competitive advantage compared to spruce due to the higher growth rate and size at the same age. Recognition of combined discrete and chronic disturbances as drivers of the tree layer characteristics in a subalpine coniferous forest is essential in both stand history analyses and growth predictions.