Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Cell ; 187(14): 3726-3740.e43, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861993

RESUMO

Many growth factors and cytokines signal by binding to the extracellular domains of their receptors and driving association and transphosphorylation of the receptor intracellular tyrosine kinase domains, initiating downstream signaling cascades. To enable systematic exploration of how receptor valency and geometry affect signaling outcomes, we designed cyclic homo-oligomers with up to 8 subunits using repeat protein building blocks that can be modularly extended. By incorporating a de novo-designed fibroblast growth factor receptor (FGFR)-binding module into these scaffolds, we generated a series of synthetic signaling ligands that exhibit potent valency- and geometry-dependent Ca2+ release and mitogen-activated protein kinase (MAPK) pathway activation. The high specificity of the designed agonists reveals distinct roles for two FGFR splice variants in driving arterial endothelium and perivascular cell fates during early vascular development. Our designed modular assemblies should be broadly useful for unraveling the complexities of signaling in key developmental transitions and for developing future therapeutic applications.


Assuntos
Diferenciação Celular , Fatores de Crescimento de Fibroblastos , Receptores de Fatores de Crescimento de Fibroblastos , Transdução de Sinais , Animais , Humanos , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Camundongos , Ligantes , Cálcio/metabolismo , Sistema de Sinalização das MAP Quinases
2.
Biochem Biophys Res Commun ; 734: 150591, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39255745

RESUMO

Breast cancer is a prominent cause of death among women and is distinguished by a high occurrence of metastasis. From this perspective, apart from conventional therapies, several alternative approaches have been researched and explored in recent years, including the utilization of nano-albumin and statin medications like simvastatin. The objective of this study was to prepare albumin nanoparticles incorporating simvastatin by the self-assembly method and evaluate their impact on breast cancer metastasis and apoptosis. The data showed the prepared nanoparticles have a diameter of 185 ± 24nm and a drug loading capacity of 8.85 %. The findings exhibit improved release in a lysosomal-like environment and under acidic pH conditions. MTT data showed that nanoparticles do not exhibit a dose-dependent effect on cells. Additionally, the results from MTT, flow cytometry, and qPCR analyses demonstrated that nanoparticles have a greater inhibitory and lethal effect on MDA-MB-231 cells compared to normal simvastatin. And cause cells to accumulate in the G0/G1 phase, initiating apoptotic pathways by inhibiting cell cycle progression. Nanoparticles containing simvastatin can prevent cell invasion and migration in both monolayer and spheroid models, as compared to simvastatin alone, at microscopic levels and in gene expression. The obtained data clearly showed that, compared to simvastatin, nanoparticles containing simvastatin demonstrated significant efficacy in suppressing the growth, proliferation, invasion, and migration of cancer cells in monolayer (2D) and spheroid (3D) models.

3.
Nat Mater ; 22(12): 1556-1563, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37845322

RESUMO

Protein crystallization plays a central role in structural biology. Despite this, the process of crystallization remains poorly understood and highly empirical, with crystal contacts, lattice packing arrangements and space group preferences being largely unpredictable. Programming protein crystallization through precisely engineered side-chain-side-chain interactions across protein-protein interfaces is an outstanding challenge. Here we develop a general computational approach for designing three-dimensional protein crystals with prespecified lattice architectures at atomic accuracy that hierarchically constrains the overall number of degrees of freedom of the system. We design three pairs of oligomers that can be individually purified, and upon mixing, spontaneously self-assemble into >100 µm three-dimensional crystals. The structures of these crystals are nearly identical to the computational design models, closely corresponding in both overall architecture and the specific protein-protein interactions. The dimensions of the crystal unit cell can be systematically redesigned while retaining the space group symmetry and overall architecture, and the crystals are extremely porous and highly stable. Our approach enables the computational design of protein crystals with high accuracy, and the designed protein crystals, which have both structural and assembly information encoded in their primary sequences, provide a powerful platform for biological materials engineering.


Assuntos
Proteínas , Proteínas/química , Cristalização
4.
Cancer Sci ; 114(4): 1337-1352, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36479791

RESUMO

Hepatocellular carcinoma (HCC) is a heterogeneous, late-diagnosed, and highly recurrent malignancy that often affects the whole body's metabolism. Finding certain theranostic molecules that can address current concerns simultaneously is one of the priorities in HCC management. In this study, performing protein-protein interaction network analysis proposed hepatocyte nuclear factor 4 alpha (HNF4α) as a hub protein, associating epithelial-mesenchymal transition (EMT) to reprogrammed cancer metabolism, formerly known as the Warburg effect. Both phenomena improved the compensation of cancerous cells in competitive conditions. Mounting evidence has demonstrated that HNF4α is commonly downregulated and serves as a tumor suppressor in the HCC. Enhancing the HNF4α mRNA translation through a specific synthetic antisense long non-coding RNA, profoundly affects both EMT and onco-metabolic modules in HCC cells. HNF4α overexpression decreased featured mesenchymal transcription factors and improved hepatocytic function, decelerated glycolysis, accelerated gluconeogenesis, and improved dysregulated cholesterol metabolism. Moreover, HNF4α overexpression inhibited the migration, invasion, and proliferation of HCC cells and decreased metastasis rate and tumor growth in xenografted nude mice. Our findings suggest a central regulatory role for HNF4α through its broad access to a wide variety of gene promoters involved in EMT and the Warburg effect in human hepatocytes. This essential impact indicates that HNF4α may be a potential target for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Transição Epitelial-Mesenquimal/genética , Camundongos Nus , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/genética , Fator 4 Nuclear de Hepatócito/genética , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética
5.
Oral Dis ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38009960

RESUMO

BACKGROUND: Fusobacterium nucleatum (F. nucleatum) is an integral component of supra- and subgingival biofilms, especially more prevalent in subgingival areas during both periodontal health and disease. AIMS: In this review, we explore the physical, metabolic, and genetic interactions that influence the role of F. nucleatum in the formation of mixed oral biofilms. The role of F. nucleatum in antibiotic resistance in oral biofilms was discussed and some therapeutic strategies were proposed. METHODS: PubMed, Scopus, Google Scholar, and the Web of Science were extensively searched for English-language reports. RESULTS: F. nucleatum-derived proteins such as RadD, Fap2, FomA, and CmpA are involved in direct interactions contributing to biofilm formation, while autoinducer-2 and putrescine are involved in metabolic interactions. Both groups are essential for the formation and persistence of oral biofilms. This study highlights the clinical relevance of targeted interactions of F. nucleatum in supra- and subgingival oral biofilms. CONCLUSIONS: By focusing on these interactions, researchers and clinicians can develop more effective strategies to prevent biofilm-related disease and reduce the spread of antibiotic resistance. Further research in this area is warranted to explore the potential therapeutic interventions that can be derived from understanding the interactions of F. nucleatum in oral biofilm dynamics.

6.
Biotechnol Lett ; 45(9): 1053-1072, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37335426

RESUMO

Cancer is one of the leading causes of death and mortality in the world. There is an essential need to develop new drugs or therapeutic approaches to manage treatment-resistant cancers. Cancer immunotherapy is a type of cancer treatment that uses the power of the body's immune system to prevent, control, and eliminate cancer. One of the materials used as a vaccine in immunotherapy is DNA. The application of polymeric nanoparticles as carriers for DNA vaccines could be an effective therapeutic approach to activate immune responses and increase antigen presentation efficiency. Various materials have been used as polymeric nanoparticles, including: chitosan, poly (lactic-co-glycolic acid), Polyethylenimine, dendrimers, polypeptides, and polyesters. Application of these polymer nanoparticles has several advantages, including increased vaccine delivery, enhanced antigen presentation, adjuvant effects, and more sustainable induction of the immune system. Besides many clinical trials and commercial products that were developed based on polymer nanoparticles, there is still a need for more comprehensive studies to increase the DNA vaccine efficiency in cancer immunotherapy using this type of carrier.


Assuntos
Vacinas Anticâncer , Nanopartículas , Neoplasias , Vacinas de DNA , Humanos , Vacinas de DNA/uso terapêutico , Adjuvantes Imunológicos , Polímeros , Neoplasias/terapia , Imunoterapia , Nanopartículas/uso terapêutico , Vacinas Anticâncer/uso terapêutico
7.
J Cell Physiol ; 237(11): 3984-4000, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36037302

RESUMO

Development is a symphony of cells differentiation in which different signaling pathways are orchestrated at specific times and periods to form mature and functional cells from undifferentiated cells. The similarity of the gene expression profile in malignant and undifferentiated cells is an interesting topic that has been proposed for many years and gave rise to the differentiation-therapy concept, which appears a rational insight and should be reconsidered. Hepatocellular carcinoma (HCC), as the sixth common cancer and the third leading cause of cancer death worldwide, is one of the health-threatening complications in communities where hepatotropic viruses are endemic. Sedentary lifestyle and high intake of calories are other risk factors. HCC is a complex condition in which various dimensions must be addressed, including heterogeneity of cells in the tumor mass, high invasiveness, and underlying diseases that limit the treatment options. Under these restrictions, recognizing, and targeting common signaling pathways during liver development and HCC could expedite to a rational therapeutic approach, reprograming malignant cells to well-differentiated ones in a functional state. Accordingly, in this review, we highlighted the commonalities of signaling pathways in hepatogenesis and hepatocarcinogenesis, and comprised an update on the current status of targeting these pathways in laboratory studies and clinical trials.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Transdução de Sinais
8.
J Cell Physiol ; 237(4): 2095-2106, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35128660

RESUMO

Lung cancer therapeutic resistance, especially chemoresistance, is a key issue in the management of this malignancy. Despite the development of novel molecularly targeted drugs to promote therapeutic efficacy, 5-year survival of lung cancer patients is still dismal. Molecular studies through the recent years have fortunately presented multiple genes and signaling pathways, which contribute to lung cancer chemoresistance, providing a better perception of the biology of tumor cells, as well as the molecular mechanisms involved in their resistance to chemotherapeutic agents. Among those mechanisms, transfer of extracellular vesicles, such as exosomes, between cancer cells and the surrounding noncancerous ones is considered as an emerging route. Exosomes can desirably function as signaling vesicles to transmit multiple molecules from normal cells to cancer cells and their microenvironment, or vice versa. Using this ability, exosomes may affect the cancer cells' chemoresistance/chemosensitivity. Recently, noncoding RNAs (esp. microRNAs and long noncoding RNAs), as key molecules transferred by exosomes, have been reported to play a substantial role in the process of drug resistance, through modulation of various proteins and their corresponding genes. Accordingly, the current review principally aims to highlight exosomal micro- and long noncoding RNAs involved in lung cancer chemoresistance. Moreover, major molecular mechanisms, which connect corresponding RNA molecules to drug resistance, will briefly be addressed, for better clarifying of possible roles of exosomal noncoding RNAs in promoting the effectiveness of lung cancer therapy.


Assuntos
Exossomos , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Resistencia a Medicamentos Antineoplásicos/genética , Exossomos/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA não Traduzido/metabolismo , Microambiente Tumoral/genética
9.
Virus Genes ; 58(4): 270-283, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35477822

RESUMO

The number of viral particles required for oncolytic activity of measles virus (MV) can be more than a million times greater than the reported amount for vaccination. The aim of the current study is to find potential genes and signaling pathways that may be involved in the high-titer production of MV. In this study, a systems biology approach was considered including collection of gene expression profiles from the Gene Expression Omnibus (GEO) database, obtaining differentially expressed genes (DEGs), performing gene ontology, functional enrichment analyses, and topological analyses on the protein-protein interaction (PPI) network. Then, to validate the in-silico data, total RNA was isolated from five cell lines, and full-length cDNA from template RNA was synthesized. Subsequently, quantitative reverse transcription-PCR (RT-qPCR) was employed. We identified five hub genes, including RAC1, HSP90AA1, DNM1, LTBP1, and FSTL1 associated with the enhancement in MV titer. Pathway analysis indicated enrichment in PI3K-Akt signaling pathway, axon guidance, proteoglycans in cancer, regulation of actin cytoskeleton, focal adhesion, and calcium signaling pathways. Upon verification by RT-qPCR, the relative expression of candidate genes was generally consistent with our bioinformatics analysis. Hub genes and signaling pathways may be involved in understanding the pathological mechanisms by which measles virus manipulates host factors in order to facilitate its replication. RAC1, HSP90AA1, DNM1, LTBP1, and FSTL1 genes, in combination with genetic engineering techniques, will allow the direct design of high-throughput cell lines to answer the required amounts for the oncolytic activity of MV.


Assuntos
Proteínas Relacionadas à Folistatina , Vírus Oncolíticos , Biologia Computacional/métodos , Proteínas Relacionadas à Folistatina/genética , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/genética , Vírus do Sarampo/genética , Vírus Oncolíticos/genética , Fosfatidilinositol 3-Quinases/genética , Mapas de Interação de Proteínas/genética , RNA , Biologia de Sistemas
10.
Mol Biol Rep ; 49(3): 2421-2432, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34850336

RESUMO

Resistance of gastrointestinal (GI) cancer cells to therapeutic agents are one of the major problems in treating this type of cancer. Although the exact mechanism of drug resistance has not yet been fully elucidated, various factors have been identified as contributing factors involved in this process. Several studies have revealed the role of exosomes, especially exosomal microRNAs (miRNAs), in GI tumorigenesis, invasion, angiogenesis, and drug resistance. Exosomes, a type of small extracellular vesicles (EVs), are originated from endosomes and are released into the extracellular environment and body fluids by different cell types. Exosomes mediate cell-cell communication by transferring different cargos, including miRNAs, between parent and recipient cells. Therefore, identifying these exosomal miRNAs and their functions in GI cancers might provide new clues to further explore the secret of this process and thus help in drug-resistance management. This review article will discuss the roles of exosomal miRNAs and their mechanisms of action in drug resistance of different types of GI cancer cells (e.g., stomach, esophagus, liver, pancreas, and colon) to therapeutic agents.


Assuntos
Exossomos , Vesículas Extracelulares , MicroRNAs , Neoplasias , Resistencia a Medicamentos Antineoplásicos/genética , Exossomos/genética , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , MicroRNAs/metabolismo , Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA