RESUMO
Systematic efforts are underway to decipher the genetic changes associated with tumor initiation and progression. However, widespread clinical application of this information is hampered by an inability to identify critical genetic events across the spectrum of human tumors with adequate sensitivity and scalability. Here, we have adapted high-throughput genotyping to query 238 known oncogene mutations across 1,000 human tumor samples. This approach established robust mutation distributions spanning 17 cancer types. Of 17 oncogenes analyzed, we found 14 to be mutated at least once, and 298 (30%) samples carried at least one mutation. Moreover, we identified previously unrecognized oncogene mutations in several tumor types and observed an unexpectedly high number of co-occurring mutations. These results offer a new dimension in tumor genetics, where mutations involving multiple cancer genes may be interrogated simultaneously and in 'real time' to guide cancer classification and rational therapeutic intervention.
Assuntos
Análise Mutacional de DNA/métodos , Mutação , Neoplasias/genética , Oncogenes , Perfilação da Expressão Gênica , Genoma Humano , Genótipo , HumanosRESUMO
Comprehensive knowledge of the genomic alterations that underlie cancer is a critical foundation for diagnostics, prognostics, and targeted therapeutics. Systematic efforts to analyze cancer genomes are underway, but the analysis is hampered by the lack of a statistical framework to distinguish meaningful events from random background aberrations. Here we describe a systematic method, called Genomic Identification of Significant Targets in Cancer (GISTIC), designed for analyzing chromosomal aberrations in cancer. We use it to study chromosomal aberrations in 141 gliomas and compare the results with two prior studies. Traditional methods highlight hundreds of altered regions with little concordance between studies. The new approach reveals a highly concordant picture involving approximately 35 significant events, including 16-18 broad events near chromosome-arm size and 16-21 focal events. Approximately half of these events correspond to known cancer-related genes, only some of which have been previously tied to glioma. We also show that superimposed broad and focal events may have different biological consequences. Specifically, gliomas with broad amplification of chromosome 7 have properties different from those with overlapping focalEGFR amplification: the broad events act in part through effects on MET and its ligand HGF and correlate with MET dependence in vitro. Our results support the feasibility and utility of systematic characterization of the cancer genome.
Assuntos
Aberrações Cromossômicas/estatística & dados numéricos , Glioma/genética , Linhagem Celular Tumoral , Interpretação Estatística de Dados , Glioma/patologia , Humanos , Polimorfismo de Nucleotídeo Único , ProbabilidadeRESUMO
Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable, heterogeneous disorder of early onset, consisting of a triad of symptoms: inattention, hyperactivity, and impulsivity. The disorder has a significant genetic component, and theories of etiology include abnormalities in the dopaminergic system, with DRD4, DAT1, SNAP25, and DRD5 being implicated as major susceptibility genes. An initial report of association between ADHD and the common 148-bp allele of a microsatellite marker located 18.5 kb from the DRD5 gene has been followed by several studies showing nonsignificant trends toward association with the same allele. To establish the postulated association of the (CA)(n) repeat with ADHD, we collected genotypic information from 14 independent samples of probands and their parents, analyzed them individually and, in the absence of heterogeneity, analyzed them as a joint sample. The joint analysis showed association with the DRD5 locus (P=.00005; odds ratio 1.24; 95% confidence interval 1.12-1.38). This association appears to be confined to the predominantly inattentive and combined clinical subtypes.