Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 10042, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340036

RESUMO

We develop a thermoelectric generator based on catalytic combustion and operating in the low power range (up to 10 W). Considering the target of small-scale thermoelectric generators, the additive technique was chosen as an enabling technology to customize the different parts of the presented device. The generator consists of a hexagonal shaped combustion chamber coupled to commercial thermoelectric modules, water-cooled at the cold side. Thanks to the components design, heat transfer across each part of the system is properly driven enhancing the thermal management of the system. Moreover, in order to improve the overall efficiency, exhausts outlet is designed to promote heat recovery. The generator is characterized achieving an electrical power output close to 9 W in continuous regime, with an overall efficiency of 3.55%. The compact size, the light weight, the simple design and the reliability in continuous operating conditions are all promising features of the device described. Furthermore, the materials chosen for the device can suggest a way to fabricate cheaper heat exchangers, actually one of the main costs of the device development.

2.
Materials (Basel) ; 14(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34300689

RESUMO

Among NiTi-based alloys, one of the most promising and exploited alloys is NiTiCu, since the addition of Cu in substitution of Ni in the binary equiatomic NiTi has a significant influence on the martensitic transformation and the thermomechanical properties of the system. A high content of Cu improves the damping properties at the expense of phase homogeneity and workability. The present study focuses on an alloy with a high copper content, i.e., 20 at.%. For this specific composition, the correlation between the thermal treatments, microstructure, formation of secondary phases, and damping properties are investigated by several analyses. The microscopic observation, together with the compositional analysis, allowed the determination of four different phases in the alloy. Both the calorimetry and dynamic thermo mechanical measurements, which confirmed the high damping ability of the alloy, provided a characterization of the martensitic transition. Finally, the electron backscatter diffraction (EBSD) analysis detected the different crystallographic structures (i.e., cubic austenite, orthorhombic martensite, and cubic (face-centered) NiTi2) and their orientation in the different phases. Therefore, the present work aims to improve the knowledge of the role of secondary phases in the optimization of the NiTiCu20 alloy as a valuable alternative to typical alloys used for damping purposes.

3.
Materials (Basel) ; 13(21)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126497

RESUMO

The present work focused on the microstructural, thermal, electrical, and damping characterization of NiMnGa samples produced through a powder pressing and a sintering process; the effect of sintering times and of the starting powder size were evaluated. Moreover, an observation of the evolution of martensitic transformation typical of NiMnGa ferromagnetic shape memory alloy was conducted in comparison with the cast material behavior and in correlation with the material densification. The optimum powder size and sintering time for the process, i.e., 50 µm or lower and 72 h, were identified considering the investigated physical properties of the sintered samples in comparison to the cast material. The corresponding sample showed the best compromise between density, thermal and electrical properties, and damping and functional behaviour. In general, the outcomes of this study could be the basis of a useful tool for production processes that include a sintering step as well as being a starting point for the evaluation of an alternative low cost fabrication method of this alloy.

4.
Nanomaterials (Basel) ; 9(8)2019 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-31382607

RESUMO

Neutron scattering in combination with scanning electron and atomic force microscopy were employed to quantitatively resolve elemental composition, nano- through meso- to metallurgical structures and surface characteristics of two commercial stainless steel orthodontic archwires-G&H and Azdent. The obtained bulk composition confirmed that both samples are made of metastable austenitic stainless steel type AISI 304. The neutron technique's higher detection sensitivity to alloying elements facilitated the quantitative determination of the composition factor (CF), and the pitting resistance equivalent number (PREN) for predicting austenite stability and pitting-corrosion resistance, respectively. Simultaneous neutron diffraction analyses revealed that both samples contained additional martensite phase due to strain-induced martensite transformation. The unexpectedly high martensite content (46.20 vol%) in G&H was caused by combination of lower austenite stability (CF = 17.37, p = .03), excessive cold working and inadequate thermal treatment during material processing. Together, those results assist in revealing alloying recipes and processing history, and relating these with corrosion resistance and mechanical properties. The present methodology has allowed access to unprecedented length-scale (µm to sub-nm) resolution, accessing nano- through meso-scopic properties. It is envisaged that such an approach can be extended to the study and design of other metallic (bio)materials used in medical sciences, dentistry and beyond.

5.
Mater Sci Eng C Mater Biol Appl ; 56: 30-6, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26249562

RESUMO

The present work proposes a new suturing procedure based on self-accommodating suture points. Each suture point is made of a commercial NiTi wire hot-shaped in a single loop ring; a standard suture needle is then fixed at one end of the NiTi suture. According to this simple geometry, several NiTi suture stitches have been prepared and tested by tensile test to verify the closing force in comparison to that of commercial sutures. Further experimental tests have also been performed on anatomic samples from animals to verify the handiness of the NiTi suture. Moreover, surface quality of sutures has been carefully investigated via microscopy. Results show that the NiTi suture expresses high stiffness and a good surface quality. In addition, the absence of manual knotting allows for a simple, fast and safe procedure.


Assuntos
Ligas/química , Técnicas de Sutura/instrumentação , Animais , Teste de Materiais/instrumentação , Agulhas , Níquel/química , Suturas , Titânio/química
6.
Mater Sci Eng C Mater Biol Appl ; 37: 171-6, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24582237

RESUMO

In this work, a new NiTi shape memory alloy (SMA) bone fixator is proposed. Thanks to the shape memory effect, this device does not need any external tool for the fixation, as the anchorage is obtained only by the self-accommodation of the clip during the parent transformation. Calorimetry and thermo-mechanical tests were used to evaluate the phase transformation temperatures and to estimate the forces generated both during the fixing surgical procedure and after the surgical operation. An application on animal anatomical sample was also performed; an appropriate mechanical tightness as well as a good handiness has been found.


Assuntos
Materiais Biocompatíveis/química , Níquel/química , Titânio/química , Ligas/química , Teste de Materiais , Estresse Mecânico , Instrumentos Cirúrgicos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA