Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pharmacol Ther ; 258: 108640, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38570075

RESUMO

DNA methylation is a critical component of gene regulation and plays an important role in the development of cancer. Hypermethylation of tumor suppressor genes and silencing of DNA repair pathways facilitate uncontrolled cell growth and synergize with oncogenic mutations to perpetuate cancer phenotypes. Additionally, aberrant DNA methylation hinders immune responses crucial for antitumor immunity. Thus, inhibiting dysregulated DNA methylation is a promising cancer therapy. Pharmacologic inhibition of DNA methylation reactivates silenced tumor suppressors and bolster immune responses through induction of viral mimicry. Now, with the advent of immunotherapies and discovery of the immune-modulatory effects of DNA methylation inhibitors, there is great interest in understanding how targeting DNA methylation in combination with other therapies can enhance antitumor immunity. Here, we describe the role of aberrant DNA methylation in cancer and mechanisms by which it promotes tumorigenesis and modulates immune responses. Finally, we review the initial discoveries and ongoing efforts to target DNA methylation as a cancer therapeutic.


Assuntos
Metilação de DNA , Neoplasias , Humanos , Metilação de DNA/efeitos dos fármacos , Neoplasias/genética , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Terapia de Alvo Molecular , Imunoterapia/métodos
2.
Nat Commun ; 15(1): 4923, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862484

RESUMO

Missions into Deep Space are planned this decade. Yet the health consequences of exposure to microgravity and galactic cosmic radiation (GCR) over years-long missions on indispensable visceral organs such as the kidney are largely unexplored. We performed biomolecular (epigenomic, transcriptomic, proteomic, epiproteomic, metabolomic, metagenomic), clinical chemistry (electrolytes, endocrinology, biochemistry) and morphometry (histology, 3D imaging, miRNA-ISH, tissue weights) analyses using samples and datasets available from 11 spaceflight-exposed mouse and 5 human, 1 simulated microgravity rat and 4 simulated GCR-exposed mouse missions. We found that spaceflight induces: 1) renal transporter dephosphorylation which may indicate astronauts' increased risk of nephrolithiasis is in part a primary renal phenomenon rather than solely a secondary consequence of bone loss; 2) remodelling of the nephron that results in expansion of distal convoluted tubule size but loss of overall tubule density; 3) renal damage and dysfunction when exposed to a Mars roundtrip dose-equivalent of simulated GCR.


Assuntos
Radiação Cósmica , Voo Espacial , Animais , Humanos , Camundongos , Radiação Cósmica/efeitos adversos , Ratos , Masculino , Rim/patologia , Rim/efeitos da radiação , Rim/metabolismo , Nefropatias/patologia , Nefropatias/etiologia , Ausência de Peso/efeitos adversos , Astronautas , Camundongos Endogâmicos C57BL , Proteômica , Feminino , Marte , Simulação de Ausência de Peso/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA