Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Transl Genet Genom ; 7(1): 3-16, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817228

RESUMO

Aim: Obesity and obesogenic diets might partly accelerate cancer development through epigenetic mechanisms. To determine these early effects, we investigated the impact of three days of a high-fat diet on epigenomic and transcriptomic changes in Apc Min/+ murine intestinal epithelia. Method: ChIP-Seq and RNA-Seq were performed on small intestinal epithelia of WT and Apc Min/+ male mice fed high-fat diet (HFD) or low-fat diet (LFD) for three days to identify genomic regions associated with differential H3K27ac levels as a marker of variant enhancer loci (VELs) as well as differentially expressed genes (DEGs). Results: Regarding epigenetic and transcriptomic changes, diet type (LFD vs. HFD) showed a significant impact, and genotype (WT vs.Apc Min/+) showed a small impact. Compared to LFD, HFD resulted in 1306 gained VELs, 230 lost VELs, 133 upregulated genes, and 127 downregulated genes in WT mice, with 1056 gained VELs, 371 lost VELs, 222 upregulated genes, and 182 downregulated genes in Apc Min/+ mice. Compared to the WT genotype, the Apc Min/+ genotype resulted in zero changed VELs for either diet type group, 21 DEGs for LFD, and 48 DEGs for HFD. Most gained VELs, and upregulated genes were associated with lipid metabolic processes. Gained VELs were also associated with Wnt signaling. Downregulated genes were associated with antigen presentation and processing. Conclusion: Three days of HFD-induced epigenomic and transcriptomic changes involving metabolic and immunologic pathways that may promote tumor growth in the genetically predisposed murine intestine without affecting key cancer signaling pathways.

2.
Elife ; 82019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30759065

RESUMO

Commonly-mutated genes have been found for many cancers, but less is known about mutations in cis-regulatory elements. We leverage gains in tumor-specific enhancer activity, coupled with allele-biased mutation detection from H3K27ac ChIP-seq data, to pinpoint potential enhancer-activating mutations in colorectal cancer (CRC). Analysis of a genetically-diverse cohort of CRC specimens revealed that microsatellite instable (MSI) samples have a high indel rate within active enhancers. Enhancers with indels show evidence of positive selection, increased target gene expression, and a subset is highly recurrent. The indels affect short homopolymer tracts of A/T and increase affinity for FOX transcription factors. We further demonstrate that signature mismatch-repair (MMR) mutations activate enhancers using a xenograft tumor metastasis model, where mutations are induced naturally via CRISPR/Cas9 inactivation of MLH1 prior to tumor cell injection. Our results suggest that MMR signature mutations activate enhancers in CRC tumor epigenomes to provide a selective advantage.


Assuntos
Neoplasias Colorretais/genética , Reparo de Erro de Pareamento de DNA/genética , Elementos Facilitadores Genéticos/genética , Epigenoma , Mutação/genética , Acetilação , Animais , Sequência de Bases , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Histonas/metabolismo , Humanos , Mutação INDEL/genética , Lisina/metabolismo , Camundongos , Instabilidade de Microssatélites , Motivos de Nucleotídeos/genética , Fenótipo , Seleção Genética , Fatores de Transcrição/metabolismo
3.
Sci Rep ; 6: 38001, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27905490

RESUMO

In theory, a few naturally occurring evolutionary changes in the genome of a model organism may have little or no observable impact on its wild type phenotype, and yet still substantially impact the phenotypes of mutant strains through epistasis. To see if this is happening in a model organism, we obtained nine different laboratories' wild type Myxococcus xanthus DK1622 "sublines" and sequenced each to determine if they had evolved after their physical separation. Under a common garden experiment, each subline satisfied the phenotypic prerequisites for wild type, but many differed to a significant degree in each of the four quantitative phenotypic traits we measured, with some sublines differing by several-fold. Genome resequencing identified 29 variants between the nine sublines, and eight had at least one unique variant within an Open Reading Frame (ORF). By disrupting the ORF MXAN7041 in two different sublines, we demonstrated substantial epistasis from these naturally occurring variants. The impact of such inter-laboratory wild type evolution is important to any genotype-to-phenotype study; an organism's phenotype may be sensitive to small changes in genetic background, so that results from phenotypic screens and other related experiments might not agree with prior published results or the results from other laboratories.


Assuntos
Mutagênese , Myxococcus xanthus/genética , Análise de Sequência de DNA/métodos , Epistasia Genética , Evolução Molecular , Genoma Bacteriano , Fases de Leitura Aberta , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA