Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Curr Opin Rheumatol ; 36(1): 69-75, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37720975

RESUMO

PURPOSE OF REVIEW: Synovial fibroblasts are the central cells of connective tissue homeostasis. In rheumatoid arthritis (RA) tissue, synovial fibroblasts are activated because of the proinflammatory environment very early in the disease. Epigenetic alterations in RASF result in a permanently activated stage, and activated RASF are involved in many processes of RA pathophysiology. Therefore, several recent findings of the last 18 months with focus on RASF activation and function are summarized. RECENT FINDINGS: RASF activation because of a profoundly altered epigenome leads to an invasive phenotype with increased migration, adhesion and invasion into cartilage, which was further characterized in several studies. RASF subtypes and subtype dynamics were evaluated using high-resolution techniques to better understand RASF pathophysiology. Many studies addressing interactions with immune or stromal cell types have been published showing that RASF interact with many different cell types contributing not only to their own activation and pro-inflammatory response but also to the activation of the other cells. SUMMARY: Highly interesting findings revealing mechanisms of RASF activation and altered functions have been published, RASF subsets further characterized, and interactions with cell types elucidated, which all contribute to a better understanding of the role of RASF in RA development and progression.


Assuntos
Artrite Reumatoide , Membrana Sinovial , Humanos , Membrana Sinovial/metabolismo , Fibroblastos
2.
J Physiol ; 601(18): 4121-4133, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37598301

RESUMO

Glycine receptors (GlyRs), together with GABAA receptors, mediate postsynaptic inhibition in most spinal cord and hindbrain neurons. In several CNS regions, GlyRs are also expressed in presynaptic terminals. Here, we analysed the effects of a phospho-deficient mutation (S346A) in GlyR α3 subunits on inhibitory synaptic transmission in superficial spinal dorsal horn neurons, where this subunit is abundantly expressed. Unexpectedly, we found that not only were the amplitudes of evoked glycinergic inhibitory postsynaptic currents (IPSCs) significantly larger in GlyRα3(S346A) mice than in mice expressing wild-type α3GlyRs (GlyRα3(WT) mice), but so were those of GABAergic IPSCs. Decreased frequencies of spontaneously occurring glycinergic and GABAergic miniature IPSCs (mIPSCs) with no accompanying change in mIPSC amplitudes suggested a change in presynaptic transmitter release. Paired-pulse experiments on glycinergic IPSCs revealed an increased paired-pulse ratio and a smaller coefficient of variation in GlyRα3(S346A) mice, which together indicate a reduction in transmitter release probability and an increase in the number of releasable vesicles. Paired-pulse ratios of GABAergic IPSCs recorded in the presence of strychnine were not different between genotypes, while the coefficient of variation was smaller in GlyRα3(S346A) mice, demonstrating that the decrease in release probability was readily reversible by GlyR blockade, while the difference in the size of the pool of releasable vesicles remained. Taken together, our results suggest that presynaptic α3 GlyRs regulate synaptic glycine and GABA release in superficial dorsal horn neurons, and that this effect is potentially regulated by their phosphorylation status. KEY POINTS: A serine-to-alanine point mutation was introduced into the glycine receptor α3 subunit of mice. This point mutation renders α3 glycine receptors resistant to protein kinase A mediated phosphorylation but has otherwise only small effects on receptor function. Patch-clamp recordings from neurons in mouse spinal cord slices revealed an unexpected increase in the amplitudes of both glycinergic and GABAergic evoked inhibitory postsynaptic currents (IPSCs). Miniature IPSCs, paired-pulse ratios and synaptic variation analyses indicate a change in synaptic glycine and GABA release. The results strongly suggest that α3 subunit-containing glycine receptors are expressed on presynaptic terminals of inhibitory dorsal horn neurons where they regulate transmitter release.


Assuntos
Glicina , Receptores de Glicina , Animais , Camundongos , Ácido gama-Aminobutírico , Mutação , Células do Corno Posterior , Receptores de GABA-A/genética , Receptores de Glicina/genética , Transmissão Sináptica
3.
Clin Exp Rheumatol ; 40(11): 2133-2140, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35238767

RESUMO

OBJECTIVES: To evaluate effects of whole-body cryotherapy (WBC) in rheumatoid arthritis (RA). METHODS: Patients with active RA undergoing a 16-day multimodal rheumatologic complex treatment were randomly assigned to either WBC (6 applications in 14 days at -130°C for 3 min) or no treatment. The primary outcome was the difference between groups in pain on a numerical rating scale after intervention. Secondary outcomes assessed effects on i) disease activity, ii) functional capacity, iii) cytokine levels, and iv) use of analgesics. RESULTS: A total of 56 RA patients completed the trial (intervention group [IG]: 31 patients, control group [CG]: 25 patients). The mean change (± standard error) in pain after intervention was -2 in the IG (95% confidence interval [CI] -2.75 to -1.31, p<0.001) and -0.88 (95% CI -1.43 to -0.33, p=0.003) in the CG, with a baseline-adjusted between-group difference of -1.31 ± 0.4 (95% CI -2.1 to -0.53; p=0.002). Pain at the 12-week follow-up visit remained significantly below baseline values in the IG. Disease activity and functional capacity showed statistically and clinically meaningful improvement after intervention but were not significant at the 12-week follow up. TNF and IL-6 levels changed significantly in the IG. Eighteen of 31 (58%) patients of the IG reduced or discontinued analgesics at the 12-week follow-up. No WBC-related side effects were reported. CONCLUSIONS: WBC in RA reduces pain and disease activity significantly and in a clinically meaningful manner, resulting in a reduction of analgesics. These effects are potentially based on a change in cytokine levels.


Assuntos
Artrite Reumatoide , Humanos , Artrite Reumatoide/tratamento farmacológico , Crioterapia/efeitos adversos , Crioterapia/métodos , Dor , Citocinas
4.
Clin Exp Rheumatol ; 40(7): 1343-1351, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34596038

RESUMO

OBJECTIVES: To prospectively evaluate the effects of multimodal rheumatologic complex treatment (MRCT), a special concept of in-patient physical treatment (PT), in patients with rheumatoid arthritis (RA). METHODS: RA patients receiving a 16-day MRCT were eligible. MRCT was delivered to participants in 64 PT sessions of various modalities with a minimum of 1.400 Minutes of treatment. The primary outcome was the change in pain levels measured on a numeric rating scale (0-10) between baseline and discharge. Secondary outcomes were assessments of i) disease activity, ii) functional disabilities, iii) serum cytokine levels, iv) analgesic usage, v) patient global health and vi) patient's satisfaction with their therapeutic response to MRCT from baseline to discharge and over a 12-week follow-up. RESULTS: 53 RA patients completed the study and were analysed. Pain levels were reduced significantly and clinically meaningfully (mean ± standard error: -2.1 ± 0.3, p<0.001). Effects of MRCT lasted up to 12 weeks after discharge. After MRCT and during the 12-week follow-up use of analgesics was reduced compared to baseline. Regression analyses revealed no influencing factors on change in pain levels. Patient global health assessment remained improved throughout the entire follow-up period. No MRCT-related side effects were recorded. CONCLUSIONS: MRCT as a multimodal treatment concept with a strong emphasis on PT reduces pain significantly and in a clinically meaningful manner allowing for reduced analgesic usage.


Assuntos
Artrite Reumatoide , Analgésicos/uso terapêutico , Artrite Reumatoide/diagnóstico por imagem , Artrite Reumatoide/tratamento farmacológico , Terapia Combinada , Humanos , Dor/tratamento farmacológico , Estudos Prospectivos , Resultado do Tratamento
5.
Int J Mol Sci ; 23(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35955609

RESUMO

Endosome-localized Toll-like receptors (TLRs) 3 and 9 are expressed and functionally active in adipocytes. The functionality and role of TLR7 in adipocyte biology and innate immunity of adipose tissue (AT) is poorly characterized. We analyzed TLR7 mRNA and protein expression in murine 3T3-L1 and primary adipocytes, in co-cultures of 3T3-L1 adipocytes with murine J774A.1 monocytes and in human AT. The effects of TLR7 agonists imiquimod (IMQ) and cell-free nucleic acids (cfDNA) on adipokine concentration in cell-culture supernatants and gene expression profile were investigated. We found that TLR7 expression is strongly induced during adipocyte differentiation. TLR7 gene expression in adipocytes and AT stroma-vascular cells (SVC) seems to be independent of TLR9. IMQ downregulates resistin concentration in adipocyte cell-culture supernatants and modulates gene expression of glucose transporter Glut4. Adipocyte-derived cfDNA reduces adiponectin and resistin in cell-culture supernatants and potentially inhibits Glut4 gene expression. The responsiveness of 3T3-L1 adipocytes to imiquimod is preserved in co-culture with J774A.1 monocytes. Obesity-related, adipocyte-derived cfDNA engages adipocytic pattern recognition receptors (PRRs), modulating AT immune and metabolic homeostasis during adipose inflammation.


Assuntos
Ácidos Nucleicos Livres , Resistina , Células 3T3-L1 , Adipócitos/metabolismo , Adjuvantes Imunológicos/farmacologia , Animais , Diferenciação Celular/genética , Ácidos Nucleicos Livres/metabolismo , Humanos , Imiquimode/farmacologia , Camundongos , Resistina/metabolismo , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo
6.
Z Rheumatol ; 80(4): 353-361, 2021 May.
Artigo em Alemão | MEDLINE | ID: mdl-33774725

RESUMO

One of the most recent scientific fields is the interaction between the immune system and metabolic processes. These interactions increasingly involve intracellular and extracellular signaling molecules and their receptors as well as molecular mechanisms that are used by both systems. The result of these intensive interactions is characterized by the term "metaflammation" and involves in particular, the ubiquitous adipose tissue present throughout the body. The links identified to date between the immune system and metabolism play a greater role in inflammatory rheumatic joint diseases than previously thought. In general, a markedly high body mass index (BMI) in particular, is associated with increased inflammatory activity and this is independent of the underlying disease entity. A higher BMI at the beginning of an immunomodulatory therapy also causes a more difficult response to the medication. Thus, the current scientific objective is to identify the individual "immuno-metabolic" pathways in order to apply the medications specifically to the site of action. Furthermore, all newer therapeutic agents, especially those specifically acting against individual immunological molecules, should be systematically analyzed with respect to their metabolic concomitant effects and their influence on metabolic comorbidities.


Assuntos
Obesidade , Doenças Reumáticas , Tecido Adiposo , Índice de Massa Corporal , Humanos , Inflamação/tratamento farmacológico , Doenças Reumáticas/diagnóstico , Doenças Reumáticas/tratamento farmacológico , Transdução de Sinais
7.
J Neurosci ; 38(2): 322-334, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29167401

RESUMO

Acetaminophen (paracetamol) is a widely used analgesic and antipyretic drug with only incompletely understood mechanisms of action. Previous work, using models of acute nociceptive pain, indicated that analgesia by acetaminophen involves an indirect activation of CB1 receptors by the acetaminophen metabolite and endocannabinoid reuptake inhibitor AM 404. However, the contribution of the cannabinoid system to antihyperalgesia against inflammatory pain, the main indication of acetaminophen, and the precise site of the relevant CB1 receptors have remained elusive. Here, we analyzed acetaminophen analgesia in mice of either sex with inflammatory pain and found that acetaminophen exerted a dose-dependent antihyperalgesic action, which was mimicked by intrathecally injected AM 404. Both compounds lost their antihyperalgesic activity in CB1-/- mice, confirming the involvement of the cannabinoid system. Consistent with a mechanism downstream of proinflammatory prostaglandin formation, acetaminophen also reversed hyperalgesia induced by intrathecal prostaglandin E2 To distinguish between a peripheral/spinal and a supraspinal action, we administered acetaminophen and AM 404 to hoxB8-CB1-/- mice, which lack CB1 receptors from the peripheral nervous system and the spinal cord. These mice exhibited unchanged antihyperalgesia indicating a supraspinal site of action. Accordingly, local injection of the CB1 receptor antagonist rimonabant into the rostral ventromedial medulla blocked acetaminophen-induced antihyperalgesia, while local rostral ventromedial medulla injection of AM 404 reduced hyperalgesia in wild-type mice but not in CB1-/- mice. Our results indicate that the cannabinoid system contributes not only to acetaminophen analgesia against acute pain but also against inflammatory pain, and suggest that the relevant CB1 receptors reside in the rostral ventromedial medulla.SIGNIFICANCE STATEMENT Acetaminophen is a widely used analgesic drug with multiple but only incompletely understood mechanisms of action, including a facilitation of endogenous cannabinoid signaling via one of its metabolites. Our present data indicate that enhanced cannabinoid signaling is also responsible for the analgesic effects of acetaminophen against inflammatory pain. Local injections of the acetaminophen metabolite AM 404 and of cannabinoid receptor antagonists as well as data from tissue-specific CB1 receptor-deficient mice suggest the rostral ventromedial medulla as an important site of the cannabinoid-mediated analgesia by acetaminophen.


Assuntos
Acetaminofen/farmacologia , Analgésicos não Narcóticos/farmacologia , Bulbo/metabolismo , Dor/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Animais , Antagonistas de Receptores de Canabinoides/farmacologia , Feminino , Inflamação/metabolismo , Inflamação/fisiopatologia , Masculino , Bulbo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dor/fisiopatologia , Receptor CB1 de Canabinoide/genética
8.
Immunol Cell Biol ; 97(2): 178-189, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30252968

RESUMO

Leukocytes travel within the circulation and enter connective tissues by interactions with endothelium of postcapillary venules mediated by cell adhesion molecules, summarized as the leukocyte adhesion cascade. In the severe combined immunodeficient (SCID) mouse model, rheumatoid arthritis (RA) synovial fibroblasts (SF) migrated to distant cartilage through the vasculature. Therefore, RASF adhesion toward endothelial cells (EC) and E- and P-selectins were analyzed. Cell-to-cell binding assays between SF and EC were performed. Interactions of SF with tumor necrosis factor α (TNFα)-activated EC or selectins were analyzed in flow adhesion assays. Immunohistochemistry for E-selectin ligand CD15s was performed. CD15s induction in RASF by human serum or media was evaluated. Wild-type and E-/-/ P-/- Selectin-SCID mice were used for inverse-wrap surgery. After laser-mediated microdissection, real-time PCR for E-/P-selectin/vascular cell adhesion molecule 1 was performed. Adhesion between SF/EC under static conditions was highest in Roswell Park Memorial Institute-cultured RASF to TNFαα-activated human umbilical vein endothelial cells (2.25-fold) and RASF adhesion was higher toward venous than arterial EC (Dulbecco's modified eagle medium P = 0.0419, RPMI P = 0.0119). In flow chamber assays, RASF adhesion to E-selectin was higher than to P-selectin (e.g. 0.9 dyn cm-2 P = 0.0001). Osteoarthritis synovial fibroblasts showed lower rolling/adhesion properties (e.g. 0.5 dyn cm-2 , P = 0.0010). RASF adhesion to TNFαα-activated EC was increased (e.g. 0.9 dyn cm-2 , P = 0.0061). CD15s induction in RASF was strongest in RA serum. Vimentin/CD15s double-positive cells were detectable. In E-/P-selectin-deficient mice, contralateral invasion was reduced (P = 0.023). E- and P-selectin, and vascular cell adhesion molecule 1 expression in EC of implants was confirmed. Our data indicate that the milieu within vessels induces CD15s which enables RASF to interact with E-selectin/EC under flow. Therefore, RASF may migrate to distant sites and leave the vasculature similarly to leukocytes.


Assuntos
Artrite Reumatoide/patologia , Comunicação Celular , Movimento Celular , Células Endoteliais/patologia , Fibroblastos/patologia , Membrana Sinovial/patologia , Animais , Artrite Reumatoide/metabolismo , Selectina E/metabolismo , Células Endoteliais/metabolismo , Fibroblastos/metabolismo , Humanos , Camundongos , Selectina-P/metabolismo , Antígeno Sialil Lewis X/biossíntese , Membrana Sinovial/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
9.
Cytokine ; 117: 41-49, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30784899

RESUMO

OBJECTIVES: The immunomodulatory properties of adipokines have previously been reported in autoimmune disorders. Less is known about the role of adipokines in systemic sclerosis (SSc). Lung and gastrointestinal tract are frequently involved in SSc; therefore, these organs were analyzed for adipokine expression as well as pulmonary samples of patients suffering from idiopathic pulmonary fibrosis (IPF) as comparison. METHODS: Gastric samples (antrum, corpus) of SSc were analyzed immunohistochemically for adiponectin, resistin and visfatin compared with non-SSc related gastritis. Inflammatory cells were quantified in gastric samples and correlated with adipokine expression. Lung samples of SSc, IPF and healthy controls were also analyzed. Protein levels of lung tissue lysates and bronchoalveolar lavages (BAL) in minor fibrotic stages were measured by ELISA. RESULTS: Lung sections of donor parenchyma showed significantly stronger adiponectin signals as IPF and SSc (donor vs. IPF: p < 0.0001). In SSc and IPF, resistin and visfatin were increased within immune cell infiltrates, but overall no difference in expression for resistin or visfatin compared to controls was observed. In BAL and lung protein lysates of early stages of fibrosis, adiponectin and visfatin were not reduced in IPF and SSc compared to controls. In gastric samples collected by standard endoscopic gastric biopsy, adiponectin was also significantly reduced in SSc- compared to non-SSc gastritis (p = 0.049) while resistin and visfatin were comparable although deeper fibrotic layers were not included in the respective samples. Adiponectin-positive tissues showed higher amounts of CD4+ but not CD8+ T cells. Controls showed no correlation between CD4+ T cells and resistin, whereas SSc showed significantly more CD4+ T cells in resistin-negative tissues. CONCLUSION: Adipokines are expressed in gastric and lung samples of patients with SSc and in lung samples affected by IPF. Prominently, adiponectin levels were reduced in fibrotic SSc gastritic tissue as well as in IPF and SSc lung tissue. Consequently, adiponectin expression seems to be associated with fibrotic progression in the context of SSc and IPF.


Assuntos
Adipocinas/metabolismo , Trato Gastrointestinal/metabolismo , Pulmão/metabolismo , Escleroderma Sistêmico/metabolismo , Adiponectina/metabolismo , Adulto , Idoso , Lavagem Broncoalveolar , Feminino , Gastrite/metabolismo , Gastrite/patologia , Trato Gastrointestinal/patologia , Humanos , Fibrose Pulmonar Idiopática/patologia , Inflamação/metabolismo , Inflamação/patologia , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Nicotinamida Fosforribosiltransferase/metabolismo , Resistina/metabolismo , Índice de Gravidade de Doença , Adulto Jovem
10.
J Immunol ; 198(12): 4588-4595, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28500074

RESUMO

In rheumatoid arthritis (RA), cartilage and bone matrix are degraded, and extracellular matrix (ECM) proteins, acting as cellular activators, are liberated. Similar to ECM proteins, matrix-bound chemokines, cytokines, and growth factors (GFs) influence functional properties of key cells in RA, especially synovial fibroblasts. The role of these molecules on attachment, migration, and proinflammatory and prodestructive activation of RASFs was analyzed. Adhesion/migration of RASFs were examined under GF-enriched (GF+) or -reduced (GF-) conditions with or without addition of matrix-associated GFs, TGF-ß, and platelet-derived GF to GF- or culture supernatants. Fibroblast adhesion and alterations in proinflammatory/prodestructive properties (e.g., IL-6/matrix metalloproteinase 3-release) in response to matrix-associated molecules were compared. Effects of GF+, GF-, and other ECM components on human RASF-mediated cartilage invasion were examined in the SCID mouse model. RASF adhesion under GF- conditions was significantly lower compared with GF+ conditions (6.8- versus 8.3-fold). This effect was specific for RA because control cells showed opposite effects (e.g., osteoarthritis synovial fibroblasts [SF]; GF- versus GF+: 10.7- versus 8-fold). Addition of TGF-ß to GF- increased RASF attachment (12.7-fold) compared with other matrices and components. RASF adhesion to GF+ matrix resulted in the strongest IL-6 and matrix metalloproteinase-3 release, and was even more pronounced compared with supplementation of single GFs. In vivo, GF- matrix decreased RASF-mediated cartilage invasion compared with GF+ matrix. ECM components and especially GFs when bound within ECM actively enhance RASF attraction and cartilage adhesion. This observation was specific for RASFs as a reverse behavior was observed for controls.


Assuntos
Artrite Reumatoide/imunologia , Adesão Celular , Movimento Celular , Fibroblastos/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Membrana Sinovial/citologia , Animais , Ensaios de Migração Celular , Movimento Celular/efeitos dos fármacos , Matriz Extracelular , Fibroblastos/efeitos dos fármacos , Fibroblastos/imunologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Interleucina-6/metabolismo , Metaloproteinase 3 da Matriz/biossíntese , Metaloproteinase 3 da Matriz/metabolismo , Camundongos , Camundongos SCID , Fator de Crescimento Derivado de Plaquetas/farmacologia , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/imunologia , Fator de Crescimento Transformador beta1/farmacologia
11.
Int J Mol Sci ; 20(17)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443349

RESUMO

Rheumatic diseases encompass a diverse group of chronic disorders that commonly affect musculoskeletal structures. Osteoarthritis (OA) and rheumatoid arthritis (RA) are the two most common, leading to considerable functional limitations and irreversible disability when patients are unsuccessfully treated. Although the specific causes of many rheumatic conditions remain unknown, it is generally accepted that immune mechanisms and/or uncontrolled inflammatory responses are involved in their etiology and symptomatology. In this regard, the bidirectional communication between neuroendocrine and immune system has been demonstrated to provide a homeostatic network that is involved in several pathological conditions. Adipokines represent a wide variety of bioactive, immune and inflammatory mediators mainly released by adipocytes that act as signal molecules in the neuroendocrine-immune interactions. Adipokines can also be synthesized by synoviocytes, osteoclasts, osteoblasts, chondrocytes and inflammatory cells in the joint microenvironment, showing potent modulatory properties on different effector cells in OA and RA pathogenesis. Effects of adiponectin, leptin, resistin and visfatin on local and systemic inflammation are broadly described. However, more recently, other adipokines, such as progranulin, chemerin, lipocalin-2, vaspin, omentin-1 and nesfatin, have been recognized to display immunomodulatory actions in rheumatic diseases. This review highlights the latest relevant findings on the role of the adipokine network in the pathophysiology of OA and RA.


Assuntos
Adipocinas/metabolismo , Artrite Reumatoide/etiologia , Artrite Reumatoide/metabolismo , Adipocinas/genética , Animais , Artrite Reumatoide/patologia , Biomarcadores , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Humanos , Leptina/genética , Leptina/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo , Resistina/genética , Resistina/metabolismo , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
12.
Anal Chem ; 90(15): 8856-8864, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29944823

RESUMO

A method is described for high-resolution label-free molecular imaging of human bone tissue. To preserve the lipid content and the heterogeneous structure of osseous tissue, 4 µm thick human bone sections were prepared via cryoembedding and tape-assisted cryosectioning, circumventing the application of organic solvents and a decalcification step. A protocol for comparative mass spectrometry imaging (MSI) on the same section was established for initial analysis with time-of-flight secondary ion mass spectrometry (TOF-SIMS) at a lateral resolution of 10 µm to <500 nm, followed by atmospheric pressure scanning microprobe matrix-assisted laser desorption/ionization (AP-SMALDI) Orbitrap MSI at a lateral resolution of 10 µm. This procedure ultimately enabled MSI of lipids, providing the lateral localization of major lipid classes such as glycero-, glycerophospho-, and sphingolipids. Additionally, the applicability of the recently emerged Orbitrap-TOF-SIMS hybrid system was exemplarily examined and compared to the before-mentioned MSI methods.


Assuntos
Cabeça do Fêmur/química , Lipídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massa de Íon Secundário/métodos , Crioultramicrotomia/métodos , Humanos , Imagem Óptica/métodos
13.
Ann Rheum Dis ; 77(11): 1619-1626, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29980577

RESUMO

Tetraspanins function as membrane adaptors altering cell-cell fusion, antigen presentation, receptor-mediated signal transduction and cell motility via interaction with membrane proteins including other tetraspanins and adhesion molecules such as integrins. CD82 is expressed in several malignant cells and well described as tumour metastasis suppressor. Rheumatoid arthritis (RA) is based on persistent synovial inflammation and joint destruction driven to a large extent by transformed-appearing activated synovial fibroblasts (SF) with an increased migratory potential. OBJECTIVE: CD82 is upregulated in RA synovial fibroblasts (RASF) compared with osteoarthritis (OA) SF as well as within RA compared with OA synovial lining layer (LL) and the role of CD82 in RASF was evaluated. METHODS: CD82 and integrin immunofluorescence was performed. Lentiviral CD82 overexpression and siRNA-mediated knockdown was confirmed (realtime-PCR, Western blot, immunocytochemistry). RASF migration (Boyden chamber, scrape assay), attachment towards plastic/Matrigel, RASF-binding to endothelial cells (EC) and CD82 expression during long-term invasion in the SCID-mouse-model were evaluated. RESULTS: CD82 was induced by proinflammatory stimuli in SF. In RA-synovium, CD82 was expressed in RASF close to blood vessels, LL, sites of cartilage invasion and colocalised with distinct integrins involved in tumour metastasis suppression but also in RA-synovium by RASF. CD82 overexpression led to reduced RASF migration, cell-matrix and RASF-EC adhesion. Reduced CD82 expression (observed in the sublining) increased RASF migration and matrix adhesion whereas RASF-EC-interaction was reduced. In SCID mice, the presence of CD82 on cartilage-invading RASF was confirmed. CONCLUSION: CD82 could contribute to RASF migration to sites of inflammation and tissue damage, where CD82 keeps aggressive RASF on site.


Assuntos
Artrite Reumatoide/patologia , Fibroblastos/fisiologia , Proteína Kangai-1/fisiologia , Animais , Artrite Reumatoide/metabolismo , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Células Cultivadas , Feminino , Técnicas de Silenciamento de Genes , Humanos , Proteína Kangai-1/genética , Proteína Kangai-1/metabolismo , Camundongos SCID , RNA Interferente Pequeno/genética , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia
14.
J Immunol ; 197(7): 2589-97, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27549172

RESUMO

Extracellular RNA (exRNA) has been characterized as a molecular alarm signal upon cellular stress or tissue injury and to exert biological functions as a proinflammatory, prothrombotic, and vessel permeability-regulating factor. In this study, we investigated the contribution of exRNA and its antagonist RNase1 in a chronic inflammatory joint disease, rheumatoid arthritis (RA). Upon immunohistochemical inspection of RA, osteoarthritis (OA), and psoriatic arthritis synovium, exRNA was detectable only in the RA synovial lining layer, whereas extracellular DNA was detectable in various areas of synovial tissue. In vitro, exRNA (150-5000 nt) was released by RA synovial fibroblasts (RASF) under hypoxic conditions but not under normoxia or TNF-α treatment. RNase activity was increased in synovial fluid from RA and OA patients compared with psoriatic arthritis patients, whereas RNase activity of RASF and OASF cultures was not altered by hypoxia. Reduction of exRNA by RNase1 treatment decreased adhesion of RASF to cartilage, but it had no influence on their cell proliferation or adhesion to endothelial cells. In vivo, treatment with RNase1 reduced RASF invasion into coimplanted cartilage in the SCID mouse model of RA. We also analyzed the expression of neuropilins in synovial tissue and SF, as they may interact with vascular endothelial growth factor signaling and exRNA. The data support the concepts that the exRNA/RNase1 system participates in RA pathophysiology and that RASF are influenced by exRNA in a prodestructive manner.


Assuntos
Artrite Reumatoide/metabolismo , Adesão Celular , Movimento Celular , Espaço Extracelular/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , RNA/metabolismo , Membrana Sinovial/patologia , Animais , Artrite Reumatoide/genética , Artrite Reumatoide/patologia , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos SCID , RNA/genética , RNA/isolamento & purificação
15.
Clin Exp Rheumatol ; 35(3): 406-414, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28079506

RESUMO

OBJECTIVES: Adiponectin is an effector molecule in the pathophysiology of rheumatoid arthritis, e.g. by inducing cytokines and matrix degrading enzymes in synovial fibroblasts. There is growing evidence that adiponectin affects osteoblasts and osteoclasts although the contribution to the aberrant bone metabolism in rheumatoid arthritis is unclear. Therefore, the adiponectin effects on rheumatoid arthritis-derived osteoblasts and osteoclasts were evaluated. METHODS: Adiponectin and its receptors were examined in bone tissue. Primary human osteoblasts and osteoclasts were stimulated with adiponectin and analysed using realtime polymerase chain-reaction and immunoassays. Effects on matrix-production by osteoblasts and differentiation and resorptive activity of osteoclasts were examined. RESULTS: Immunohistochemistry of rheumatoid arthritis bone tissue showed adiponectin expression in key cells of bone remodelling. Adiponectin altered gene expression and cytokine release in osteoblasts and increased IL-8 secretion by osteoclasts. Adiponectin inhibited osterix and induced osteoprotegerin mRNA in osteoblasts. In osteoclasts, MMP-9 and tartrate resistant acid phosphatase expression was increased. Accordingly, mineralisation capacity of osteoblasts decreased whereas resorptive activity of osteoclasts increased. CONCLUSIONS: The results confirm the proinflammatory potential of adiponectin and support the idea that adiponectin influences rheumatoid arthritis bone remodelling through alterations in osteoblast and osteoclast.


Assuntos
Adiponectina/farmacologia , Artrite Reumatoide/patologia , Remodelação Óssea/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Adulto , Idoso , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Calcificação Fisiológica/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Regulação da Expressão Gênica , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Masculino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Pessoa de Meia-Idade , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteogênese/efeitos dos fármacos , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Receptores de Adiponectina/agonistas , Receptores de Adiponectina/genética , Receptores de Adiponectina/metabolismo , Fator de Transcrição Sp7 , Fosfatase Ácida Resistente a Tartarato/genética , Fosfatase Ácida Resistente a Tartarato/metabolismo , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Mol Cell Neurosci ; 75: 36-43, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27346077

RESUMO

BACKGROUND: MicroRNAs (miRNAs) regulate gene expression in physiological as well as in pathological processes, including chronic pain. Whether deletion of a gene can affect expression of the miRNAs that associate with the deleted gene mRNA remains elusive. We investigated the effects of brain-derived neurotrophic factor (Bdnf) gene deletion on the expression of miR-1 in dorsal root ganglion (DRG) neurons and its pain-associated downstream targets heat shock protein 60 (Hsp60) and connexin 43 (Cx43) in tamoxifen-inducible conditional knockout mice, Bdnf(fl/fl); Advillin-CreER(T2) (Bdnf cKO). RESULTS: Efficient Bdnf gene deletion was confirmed in DRG of Bdnf cKO mice by Real-Time qRT-PCR and ELISA 10days after completed tamoxifen treatment. In DRG, miR-1 expression was reduced 0.44-fold (p<0.05; Real-time qRT-PCR) in Bdnf cKO compared to floxed wildtype littermate control Bdnf(fl/fl) mice (WT). While Hsp60 protein expression was increased 1.85-fold (p<0.05; Western blot analysis), expression levels of Cx43 and the miR-1-associated transcription factors MEF2a and SRF remained unchanged. When analyzing Bdnf cKO mice 32days after complete tamoxifen treatment to investigate whether observed expression alterations remain permanently, we found no significant differences between Bdnf cKO and WT mice. However, miRNA microarray analysis revealed that 167 miRNAs altered (p<0.05) in DRG of these mice following Bdnf gene deletion. CONCLUSIONS: Our results indicate that deletion of Bdnf in DRG neurons leads to a temporary dysregulation of miR-1, suggesting an impairment of a presumable feedback loop between BDNF protein and its targeting miR-1. This appears to affect its downstream protein Hsp60 and as a consequence might influence the phenotype after inducible Bdnf gene deletion. While this appears to be a MEF2a-/SRF-independent and transient effect, expression levels of various other miRNAs may remain permanently altered.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Gânglios Espinais/metabolismo , MicroRNAs/genética , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Chaperonina 60/genética , Chaperonina 60/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Feminino , Deleção de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
17.
J Mol Cell Cardiol ; 101: 145-155, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27789290

RESUMO

AIMS: Biglycan, a small leucine-rich proteoglycan, has been shown to play an important role in stabilizing fibrotic scars after experimental myocardial infarction. However, the role of biglycan in the development and regression of cardiomyocyte hypertrophy and fibrosis during cardiac pressure overload and unloading remains elusive. Thus, the aim of the present study was to assess the effect of biglycan on cardiac remodeling in a mouse model of left ventricular pressure overload and unloading. METHODS AND RESULTS: Left ventricular pressure overload induced by transverse aortic constriction (TAC) in mice resulted in left ventricular dysfunction, fibrosis and increased biglycan expression. Fluorescence- and magnetic-assisted sorting of cardiac cell types revealed upregulation of biglycan in the fibroblast population, but not in cardiomyocytes, endothelial cells or leukocytes after TAC. Removal of the aortic constriction (rTAC) after short-term pressure overload (3weeks) improved cardiac contractility and reversed ventricular hypertrophy but not fibrosis in wild-type (WT) mice. Biglycan ablation (KO) enhanced functional recovery but did not resolve cardiac fibrosis. After long-term TAC for 9weeks, ablation of biglycan attenuated the development of cardiac hypertrophy and fibrosis. In vitro, biglycan induced hypertrophy of neonatal rat cardiomyocytes and led to activation of a hypertrophic gene program. Putative downstream mediators of biglycan signaling include Rcan1, Abra and Tnfrsf12a. These genes were concordantly induced by TAC in WT but not in biglycan KO mice. CONCLUSIONS: Left ventricular pressure overload induces biglycan expression in cardiac fibroblasts. Ablation of biglycan improves cardiac function and attenuates left ventricular hypertrophy and fibrosis after long-term pressure overload. In vitro biglycan induces hypertrophy of cardiomyocytes, suggesting that biglycan may act as a signaling molecule between cell types to modulate cardiac remodeling.


Assuntos
Biglicano/deficiência , Biglicano/metabolismo , Cardiomegalia/etiologia , Cardiomegalia/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia , Animais , Cardiomegalia/diagnóstico , Modelos Animais de Doenças , Ecocardiografia , Feminino , Fibrose , Hipertrofia Ventricular Esquerda/diagnóstico , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/metabolismo , Masculino , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Proteoma , Proteômica , Ratos , Remodelação Ventricular
18.
Ann Rheum Dis ; 75(5): 924-32, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-25985971

RESUMO

BACKGROUND: Cross-talk between synovial fibroblasts (SF) and immune cells is suggested to play a crucial role in inflammation and chronification of rheumatoid arthritis (RA). The contribution of B cells in this process is poorly defined. METHODS: Here, primary B cells from healthy donors were polyclonally activated and cocultured with SF of non-synovitic origin from patients with osteoarthritis. RESULTS: In B-SF cocultures the concentrations of interleukin 6 (IL-6) and IL-8 increased manifold compared with single cultures even under physical separation and remained stable for several days after B-cell removal. Intracellular staining confirmed SF as key producers of IL-6 and IL-8, and B cells as main producers of tumour necrosis factor alpha (TNFα) and IL-1ß. Blocking experiments with a combination of anti-TNFα-antibodies and rIL-1RA significantly reduced SF cytokine production by up to 90%, suggesting that B-cell-derived TNFα and IL-1ß were crucial mediators of SF activation. Interestingly, B-cell cytokine production, CD25 expression and proliferation decreased in cocultures by at least 50%, demonstrating a negative regulatory loop towards the activated B cells. Inhibition of activin receptor-like kinase 5, a crucial component of the tumour growth factor ß (TGFß) signalling pathway, partly restored B-cell proliferation, suggesting a contribution of SF-derived TGFß in B-cell suppression. Besides cytokines, B-cell-activated SF also upregulated secretion of matrix metalloproteases such as MMP-3, thereby acquiring potential tissue destructive properties. This was confirmed by their invasion into human cartilage in the severe combined immunodeficiency mouse fibroblast invasion model in vivo. CONCLUSIONS: Interaction with activated B cells leads to conversion of non-arthritic SF into SF with a proinflammatory and aggressive RA-like phenotype, thereby suggesting a new, so far unrecognised role for B cells in RA pathogenesis.


Assuntos
Linfócitos B/imunologia , Cartilagem Articular/imunologia , Fibroblastos/imunologia , Ativação Linfocitária/imunologia , Osteoartrite/imunologia , Animais , Artrite Reumatoide/imunologia , Técnicas de Cocultura , Citocinas/biossíntese , Xenoenxertos , Humanos , Tolerância Imunológica/imunologia , Mediadores da Inflamação/metabolismo , Interleucina-1beta/imunologia , Metaloproteinases da Matriz/biossíntese , Camundongos SCID , Transdução de Sinais/imunologia , Líquido Sinovial/imunologia , Fator de Crescimento Transformador beta/imunologia , Fator de Necrose Tumoral alfa/imunologia
19.
Mol Pain ; 11: 39, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26111928

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are involved in the neuroplastic changes which induce and maintain neuropathic pain. However, it is unknown whether nerve injury leads to altered miRNA expression and modulation of pain relevant target gene expression within peripheral nerves. In the present study, expression profiles of miR-1 and the pain-relevant targets, brain derived neurotrophic factor (BDNF) and Connexin 43 (Cx43), were studied in peripheral neuropathic pain, which was induced by chronic constriction injury (CCI) of the sciatic nerve in rats. The expression of miR-1 was investigated in the sciatic nerve, dorsal root ganglion (DRG) and the ipsilateral spinal cord by qPCR. Changes of BDNF and Cx43 expression patterns were studied using qPCR, Western blot analysis, ELISA and immunohistochemistry. RESULTS: In sciatic nerves of naïve rats, expression levels of miR-1 were more than twice as high as in DRG and spinal cord. In neuropathic rats, CCI lead to a time-dependent downregulation of miR-1 in the sciatic nerve but not in DRG and spinal cord. Likewise, protein expression of the miR-1 targets BDNF and Cx43 was upregulated in the sciatic nerve and DRG after CCI. Immunohistochemical staining revealed an endoneural abundancy of Cx43 in injured sciatic nerves which was absent after Sham operation. CONCLUSIONS: This study demonstrates that CCI leads to a regulation of miRNAs (miR-1) in the peripheral nervous system. This regulation is associated with alterations in the expression and localization of the miR-1 dependent pain-relevant proteins BDNF and Cx43. Further studies will have to explore the function of miRNAs in the context of neuropathic pain in the peripheral nervous system.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Conexina 43/genética , MicroRNAs/genética , Neuralgia/genética , Sistema Nervoso Periférico/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Doença Crônica , Conexina 43/metabolismo , Constrição , Imunofluorescência , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Hiperalgesia/complicações , Hiperalgesia/patologia , Masculino , MicroRNAs/metabolismo , Neuralgia/complicações , Sistema Nervoso Periférico/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia , Fatores de Tempo
20.
Ann Rheum Dis ; 74(1): 303-10, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24285492

RESUMO

OBJECTIVES: Due to their role in inflammatory metabolic diseases, we hypothesised that free fatty acids (FFA) are also involved in inflammatory joint diseases. To test this hypothesis, we analysed the effect of FFA on synovial fibroblasts (SF), human chondrocytes and endothelial cells. We also investigated whether the toll-like receptor 4 (TLR4), which can contribute to driving arthritis, is involved in FFA signalling. METHODS: Rheumatoid arthritis SF, osteoarthritis SF, psoriatic arthritis SF, human chondrocytes and endothelial cells were stimulated in vitro with different FFA. Immunoassays were used to quantify FFA-induced protein secretion. TLR4 signalling was inhibited extracellularly and intracellularly. Fatty acid translocase (CD36), responsible for transporting long-chain FFA into the cell, was also inhibited. RESULTS: In rheumatoid arthritis synovial fibroblasts (RASF), FFA dose-dependently enhanced the secretion of the proinflammatory cytokine IL-6, the chemokines IL-8 and MCP-1, as well as the matrix-degrading enzymes pro-MMP1 and MMP3. The intensity of the response was mainly dependent on the patient rather than on the type of disease. Both saturated and unsaturated FFA showed similar effects on RASF, while responses to the different FFA varied for human chondrocytes and endothelial cells. Extracellular and intracellular TLR4 inhibition as well as fatty acid transport inhibition blocked the palmitic acid-induced IL-6 secretion of RASF. CONCLUSIONS: The data show that FFA are not only metabolic substrates but may also directly contribute to articular inflammation and degradation in inflammatory joint diseases. Moreover, the data suggest that, in RASF, FFA exert their effects via TLR4 and require extracellular and intracellular access to the TLR4 receptor complex.


Assuntos
Artrite Psoriásica/imunologia , Artrite Reumatoide/imunologia , Condrócitos/imunologia , Células Endoteliais/imunologia , Ácidos Graxos não Esterificados/imunologia , Fibroblastos/imunologia , Mediadores da Inflamação/imunologia , Osteoartrite/imunologia , Transdução de Sinais/imunologia , Antígenos CD36/efeitos dos fármacos , Antígenos CD36/metabolismo , Quimiocina CCL2/efeitos dos fármacos , Quimiocina CCL2/imunologia , Condrócitos/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Ácidos Graxos não Esterificados/farmacologia , Fibroblastos/efeitos dos fármacos , Humanos , Interleucina-6/imunologia , Interleucina-8/efeitos dos fármacos , Interleucina-8/imunologia , Metaloproteinase 1 da Matriz/efeitos dos fármacos , Metaloproteinase 1 da Matriz/imunologia , Metaloproteinase 3 da Matriz/efeitos dos fármacos , Metaloproteinase 3 da Matriz/imunologia , Transdução de Sinais/efeitos dos fármacos , Membrana Sinovial/citologia , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA