Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Genes Dev ; 32(9-10): 670-681, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29739806

RESUMO

RNAi pathways detect and silence foreign nucleic acids such as viruses as well as endogenous genes in many species. The phylogenetic profile across eukaryotes of proteins that mediate key steps in RNAi is correlated with the profiles of multiple mRNA splicing proteins and with intron number, suggesting that RNAi may surveil mRNA splicing to detect the divergent or absent introns of viruses. Here we examine the role of mRNA splicing in Caenorhabditis elegans RNAi. We found that viable null mutations in U1 and U2 small nuclear ribonucleic protein (snRNP)-specific splicing factor genes cause defects in RNAi. The U1A ortholog rnp-2 is required for normal ERGO-1 Argonaute class 26G siRNA biogenesis, trans-splicing of the eri-6/7 transcript, and targeting of poorly conserved gene transcripts by WAGO Argonaute class 22G siRNAs. We found that gene transcripts engaged by the siRNA-generating machinery are poorly conserved, possess few introns, and often have introns that are divergent from introns with strong consensus splicing sites found in highly conserved genes. We present biochemical evidence that RNAi targeted transcripts are tightly bound to spliceosomes. These findings suggest multiple layers of regulation by the spliceosome at early steps of small RNA-mediated gene silencing.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Interferência de RNA/fisiologia , Precursores de RNA/metabolismo , Splicing de RNA , Animais , Regulação da Expressão Gênica/genética , Íntrons/genética , Mutação , Fatores de Processamento de RNA/genética , RNA Nuclear Pequeno/genética , Spliceossomos/metabolismo
2.
Nature ; 493(7434): 694-8, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23364702

RESUMO

Genetic and biochemical analyses of RNA interference (RNAi) and microRNA (miRNA) pathways have revealed proteins such as Argonaute and Dicer as essential cofactors that process and present small RNAs to their targets. Well-validated small RNA pathway cofactors such as these show distinctive patterns of conservation or divergence in particular animal, plant, fungal and protist species. We compared 86 divergent eukaryotic genome sequences to discern sets of proteins that show similar phylogenetic profiles with known small RNA cofactors. A large set of additional candidate small RNA cofactors have emerged from functional genomic screens for defects in miRNA- or short interfering RNA (siRNA)-mediated repression in Caenorhabditis elegans and Drosophila melanogaster, and from proteomic analyses of proteins co-purifying with validated small RNA pathway proteins. The phylogenetic profiles of many of these candidate small RNA pathway proteins are similar to those of known small RNA cofactor proteins. We used a Bayesian approach to integrate the phylogenetic profile analysis with predictions from diverse transcriptional coregulation and proteome interaction data sets to assign a probability for each protein for a role in a small RNA pathway. Testing high-confidence candidates from this analysis for defects in RNAi silencing, we found that about one-half of the predicted small RNA cofactors are required for RNAi silencing. Many of the newly identified small RNA pathway proteins are orthologues of proteins implicated in RNA splicing. In support of a deep connection between the mechanism of RNA splicing and small-RNA-mediated gene silencing, the presence of the Argonaute proteins and other small RNA components in the many species analysed strongly correlates with the number of introns in those species.


Assuntos
Caenorhabditis elegans/genética , Variação Genética , Filogenia , RNA Interferente Pequeno/genética , Animais , Caenorhabditis elegans/classificação , Proteínas de Caenorhabditis elegans/genética , Eucariotos/classificação , Eucariotos/genética , Genoma/genética , MicroRNAs/genética , Proteoma , Splicing de RNA
3.
Genes Dev ; 24(11): 1086-92, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20516194

RESUMO

MicroRNAs (miRNAs) modulate a broad range of gene expression patterns during development and tissue homeostasis, and in the pathogenesis of disease. The exquisite spatio-temporal control of miRNA abundance is made possible, in part, by regulation of the miRNA biogenesis pathway. In this review, we discuss two emerging paradigms for post-transcriptional control of miRNA expression. One paradigm centers on the Microprocessor, the protein complex essential for maturation of canonical miRNAs. The second paradigm is specific to miRNA families, and requires interaction between RNA-binding proteins and cis-regulatory sequences within miRNA precursor loops.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/metabolismo , Processamento Pós-Transcricional do RNA , Animais , Humanos , Precursores de RNA/metabolismo , Ribonuclease III/metabolismo , Transdução de Sinais/fisiologia
4.
Nucleic Acids Res ; 40(8): 3574-84, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22210884

RESUMO

Lin28 is critical for stem cell maintenance and is also associated with advanced human malignancies. Our recent genome-wide studies mark Lin28 as a master post-transcriptional regulator of a subset of messenger RNAs important for cell growth and metabolism. However, the molecular basis underpinning the selective mRNA target regulation is unclear. Here, we provide evidence that Lin28 recognizes a unique motif in multiple target mRNAs, characterized by a small but critical 'A' bulge flanked by two G:C base pairs embedded in a complex secondary structure. This motif mediates Lin28-dependent stimulation of translation. As Lin28 is also known to inhibit the biogenesis of a cohort of miRNAs including let-7, we propose that Lin28 binding to different RNA types (precursor miRNAs versus mRNAs) may facilitate recruitment of different co-factors, leading to distinct regulatory outcomes. Our findings uncover a putative yet unexpected motif that may constitute a mechanistic base for the multitude of functions regulated by Lin28 in both stem cells and cancer cells.


Assuntos
Regulação da Expressão Gênica , Biossíntese de Proteínas , RNA Mensageiro/química , Proteínas de Ligação a RNA/metabolismo , Animais , Linhagem Celular , Humanos , Camundongos , Mutação , Motivos de Nucleotídeos , Fator 3 de Transcrição de Octâmero/biossíntese , Fator 3 de Transcrição de Octâmero/genética , Estrutura Terciária de Proteína/genética
5.
Front Cell Dev Biol ; 12: 1389077, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38946799

RESUMO

The molecular mechanisms that govern the metabolic commitment to reproduction, which often occurs at the expense of somatic reserves, remain poorly understood. We identified the Caenorhabditis elegans F-box protein FBXL-5 as a negative regulator of maternal provisioning of vitellogenin lipoproteins, which mediate the transfer of intestinal lipids to the germline. Mutations in fbxl-5 partially suppress the vitellogenesis defects observed in the heterochronic mutants lin-4 and lin-29, both of which ectopically express fbxl-5 at the adult developmental stage. FBXL-5 functions in the intestine to negatively regulate expression of the vitellogenin genes; and consistently, intestine-specific over-expression of FBXL-5 is sufficient to inhibit vitellogenesis, restrict lipid accumulation, and shorten lifespan. Our epistasis analyses suggest that fbxl-5 functions in concert with cul-6, a cullin gene, and the Skp1-related gene skr-3 to regulate vitellogenesis. Additionally, fbxl-5 acts genetically upstream of rict-1, which encodes the core mTORC2 protein Rictor, to govern vitellogenesis. Together, our results reveal an unexpected role for a SCF ubiquitin-ligase complex in controlling intestinal lipid homeostasis by engaging mTORC2 signaling.

6.
bioRxiv ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38712300

RESUMO

The molecular mechanisms that govern the metabolic commitment to reproduction, which often occurs at the expense of somatic reserves, remain poorly understood. We identified the C. elegans F-box protein FBXL-5 as a negative regulator of maternal provisioning of vitellogenin lipoproteins, which mediate the transfer of intestinal lipids to the germline. Mutations in fbxl-5 partially suppress the vitellogenesis defects observed in the heterochronic mutants lin-4 and lin-29, both of which ectopically express fbxl-5 at the adult developmental stage. FBXL-5 functions in the intestine to negatively regulate expression of the vitellogenin genes; and consistently, intestine-specific over-expression of FBXL-5 is sufficient to inhibit vitellogenesis, restrict lipid accumulation, and shorten lifespan. Our epistasis analyses suggest that fbxl-5 functions in concert with cul-6 , a cullin gene, and the Skp1-related gene skr-3 to regulate vitellogenesis. Additionally, fbxl-5 acts genetically upstream of rict-1 , which encodes the core mTORC2 protein Rictor, to govern vitellogenesis. Together, our results reveal an unexpected role for a SCF ubiquitin-ligase complex in controlling intestinal lipid homeostasis by engaging mTORC2 signaling.

7.
bioRxiv ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38766075

RESUMO

Organisms must appropriately allocate energetic resources between essential cellular processes to maintain homeostasis and in turn, maximize fitness. The nutritional and homeostatic regulators of energy homeostasis have been studied in detail; however, how developmental signals might impinge on these pathways to govern cellular metabolism is poorly understood. Here, we identify a non-canonical role for Hedgehog (Hh), a classic regulator of development, in maintaining intestinal lipid homeostasis in C. elegans . We find that expression of two Hh ligands, GRD-3 and GRD-4, is controlled by the LIN-29/EGR transcription factor in the hypodermis, where the Hh secretion factor CHE-14/Dispatched also facilitates non-cell autonomous Hh signaling. We demonstrate, using C. elegans and mouse hepatocytes, that Hh metabolic regulation does not occur through the canonical Hh transcription factor, TRA-1/GLI, but rather through non-canonical signaling that engages mTOR Complex 2 (mTORC2) in the intestine. Hh mutants display impaired lipid homeostasis, including reduced lipoprotein synthesis and fat accumulation, decreased growth, and upregulation of autophagy factors, mimicking loss of mTORC2. Additionally, we found that Hh inhibits p38 MAPK signaling in parallel to mTORC2 activation and that both pathways act together to modulate of lipid homeostasis. Our findings show a non-canonical role for Hedgehog signaling in lipid metabolism via regulation of core homeostatic pathways and reveal a new mechanism by which developmental timing events govern metabolic decisions.

8.
RNA ; 17(10): 1795-803, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21849429

RESUMO

MicroRNAs (miRNAs) are small, noncoding RNAs that post-transcriptionally regulate gene expression. An emerging mechanism to control miRNA production is the addition of an oligo-uridine tail to the 3' end of the precursor miRNA. This has been demonstrated for the Let-7 family of miRNAs in embryonic cells. Additionally, nontemplated nucleotides have been found on mature miRNA species, though in most cases it is not known if nucleotide addition occurs at the precursor step or at the mature miRNA. To examine the diversity of nucleotide addition we have developed a high-throughput sequencing method specific for miRNA precursors. Here we report that nontemplated addition is a widespread phenomenon occurring in many miRNA families. As previously reported, Let-7 family members are oligo-uridylated in embryonic cells in a Lin28-dependent manner. However, we find that the fraction of uridylated precursors increases with differentiation, independent of Lin28, and is highest in adult mouse tissues, exceeding 30% of all sequence reads for some Let-7 family members. A similar fraction of sequence reads are modified for many other miRNA families. Mono-uridylation is most common, with cytidine and adenosine modification less frequent but occurring above the expected error rate for Illumina sequencing. Nucleotide addition in cell lines is associated with 3' end degradation, in contrast to adult tissues, where modification occurs predominantly on full-length precursors. This work provides an unprecedented view of the complexity of 3' modification and trimming of miRNA precursors.


Assuntos
MicroRNAs/química , Precursores de RNA/química , Animais , Sequência de Bases , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Camundongos , MicroRNAs/genética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Precursores de RNA/genética , Alinhamento de Sequência
9.
RNA ; 14(8): 1539-49, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18566191

RESUMO

A hallmark of mammalian embryonic development is the widespread induction of microRNA (miRNA) expression. Surprisingly, the transcription of many of these small, noncoding RNAs is unchanged through development; rather, a post-transcriptional regulatory event prevents accumulation of the mature miRNA species. Here, we present a biochemical framework for the regulated production of the Let-7 family of miRNAs. Embryonic cells contain a Drosha Inhibitor that prevents processing of the Let-7 primary transcript. This inhibitor specifically binds to conserved nucleotides in the loop region of the Let-7 precursor, and competitor RNAs that mimic the binding site restore Let-7 processing. We have identified the Drosha Inhibitor as the embryonic stem cell specific protein Lin-28. Lin-28 has been previously implicated in developmental regulatory pathways in Caenorhabditis elegans, and it promotes reprogramming of human somatic cells into pluripotent stem cells. Our findings outline a microRNA post-transcriptional regulatory network and establish a novel role for the miRNA precursor loop in the regulated production of mature Let-7.


Assuntos
MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Linhagem Celular , Sistema Livre de Células , Células HeLa , Humanos , Camundongos , Interferência de RNA
10.
Curr Biol ; 24(8): 839-44, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24684932

RESUMO

More than 2,000 C. elegans genes are targeted for RNA silencing by the mutator complex, a specialized small interfering RNA (siRNA) amplification module which is nucleated by the Q/N-rich protein MUT-16. The mutator complex localizes to Mutator foci adjacent to P granules at the nuclear periphery in germ cells. Here, we show that the DEAD box RNA helicase smut-1 functions redundantly in the mutator pathway with its paralog mut-14 during RNAi. Mutations in both smut-1 and mut-14 also cause widespread loss of endogenous siRNAs. The targets of mut-14 and smut-1 largely overlap with the targets of other mutator class genes; however, the mut-14 smut-1 double mutant and the mut-16 mutant display the most dramatic depletion of siRNAs, suggesting that they act at a similarly early step in siRNA formation. mut-14 and smut-1 are predominantly expressed in the germline and, unlike other mutator class genes, are specifically required for RNAi targeting germline genes. A catalytically inactive, dominant-negative missense mutant of MUT-14 is RNAi defective in vivo; however, mutator complexes containing the mutant protein retain the ability to synthesize siRNAs in vitro. The results point to a role for mut-14 and smut-1 in initiating siRNA amplification in germ cell Mutator foci, possibly through the recruitment or retention of target mRNAs.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , RNA Helicases DEAD-box/metabolismo , Células Germinativas/enzimologia , Interferência de RNA/fisiologia , RNA Interferente Pequeno/biossíntese , Animais , Sequência de Bases , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fluorimunoensaio , Células Germinativas/fisiologia , Imunoprecipitação , Dados de Sequência Molecular , Reação em Cadeia da Polimerase em Tempo Real , Saccharomyces cerevisiae , Alinhamento de Sequência , Análise de Sequência de DNA
11.
Int J Biochem Cell Biol ; 42(8): 1330-3, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20619222

RESUMO

microRNAs are small regulatory RNAs that are processed from larger, genomically encoded transcripts. While the biochemical mechanism underlying microRNA processing is well understood, it was recently discovered that processing of one developmentally crucial group of microRNAs, the Let-7 family, is blocked by the protein Lin-28 in embryonic cells. This novel regulation of microRNA biogenesis may be very important for the maintenance of embryonic stem cell pluripotency as well as for the reprogramming of somatic cells to induce pluripotent stem cells. The studies leading to the discovery of the Let-7 block by Lin-28 and questions regarding the biochemical mechanism behind Lin-28-mediated microRNA silencing are discussed.


Assuntos
Embrião de Mamíferos/metabolismo , MicroRNAs/biossíntese , Proteínas de Ligação a RNA/metabolismo , Animais , Desenvolvimento Embrionário/genética , Processamento Pós-Transcricional do RNA
12.
Genome Biol ; 8(2): R27, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17326821

RESUMO

BACKGROUND: microRNAs (miRNAs) are small, noncoding RNA molecules that are now thought to regulate the expression of many mRNAs. They have been implicated in the etiology of a variety of complex diseases, including Tourette's syndrome, Fragile x syndrome, and several types of cancer. RESULTS: We hypothesized that schizophrenia might be associated with altered miRNA profiles. To investigate this possibility we compared the expression of 264 human miRNAs from postmortem prefrontal cortex tissue of individuals with schizophrenia (n = 13) or schizoaffective disorder (n = 2) to tissue of 21 psychiatrically unaffected individuals using a custom miRNA microarray. Allowing a 5% false discovery rate, we found that 16 miRNAs were differentially expressed in prefrontal cortex of patient subjects, with 15 expressed at lower levels (fold change 0.63 to 0.89) and 1 at a higher level (fold change 1.77) than in the psychiatrically unaffected comparison subjects. The expression levels of 12 selected miRNAs were also determined by quantitative RT-PCR in our lab. For the eight miRNAs distinguished by being expressed at lower microarray levels in schizophrenia samples versus comparison samples, seven were also expressed at lower levels with quantitative RT-PCR. CONCLUSION: This study is the first to find altered miRNA profiles in postmortem prefrontal cortex from schizophrenia patients.


Assuntos
MicroRNAs/metabolismo , Córtex Pré-Frontal/metabolismo , Transtornos Psicóticos/genética , Esquizofrenia/genética , Motivos de Aminoácidos/genética , Primers do DNA , Feminino , Humanos , Masculino , MicroRNAs/genética , Análise em Microsséries , Transtornos Psicóticos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esquizofrenia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA