Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 34(6): 1463-1478, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28333212

RESUMO

In the development of the human brain, human-specific genes are considered to play key roles, conferring its unique advantages and vulnerabilities. At the time of Homo lineage divergence from Australopithecus, SRGAP2C gradually emerged through a process of serial duplications and mutagenesis from ancestral SRGAP2A (3.4-2.4 Ma). Remarkably, ectopic expression of SRGAP2C endows cultured mouse brain cells, with human-like characteristics, specifically, increased dendritic spine length and density. To understand the molecular mechanisms underlying this change in neuronal morphology, we determined the structure of SRGAP2A and studied the interplay between SRGAP2A and SRGAP2C. We found that: 1) SRGAP2A homo-dimerizes through a large interface that includes an F-BAR domain, a newly identified F-BAR extension (Fx), and RhoGAP-SH3 domains. 2) SRGAP2A has an unusual inverse geometry, enabling associations with lamellipodia and dendritic spine heads in vivo, and scaffolding of membrane protrusions in cell culture. 3) As a result of the initial partial duplication event (∼3.4 Ma), SRGAP2C carries a defective Fx-domain that severely compromises its solubility and membrane-scaffolding ability. Consistently, SRGAP2A:SRAGP2C hetero-dimers form, but are insoluble, inhibiting SRGAP2A activity. 4) Inactivation of SRGAP2A is sensitive to the level of hetero-dimerization with SRGAP2C. 5) The primal form of SRGAP2C (P-SRGAP2C, existing between ∼3.4 and 2.4 Ma) is less effective in hetero-dimerizing with SRGAP2A than the modern SRGAP2C, which carries several substitutions (from ∼2.4 Ma). Thus, the genetic mutagenesis phase contributed to modulation of SRGAP2A's inhibition of neuronal expansion, by introducing and improving the formation of inactive SRGAP2A:SRGAP2C hetero-dimers, indicating a stepwise involvement of SRGAP2C in human evolutionary history.


Assuntos
Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/genética , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Movimento Celular/genética , Movimento Celular/fisiologia , Cristalografia por Raios X/métodos , Espinhas Dendríticas , Evolução Molecular , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Neurônios/metabolismo , Estrutura Terciária de Proteína/genética , Pseudópodes , Relação Estrutura-Atividade
2.
FASEB J ; 28(12): 5223-33, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25223609

RESUMO

Pseudomonas aeruginosa (PA) is a primary cause of nosocomial infections. A key element in PA pathogenicity is its ability to form biofilms that withstand eradication by antibiotics and the immune system. Biofilm formation is controlled by phosphate signaling and here we provide evidence that PstS, a subunit of the PA Pst phosphate transporter, has a surprising role in this process. Using X-ray crystallography, we characterized the unique underpinnings of PstS phosphate binding and identified an unusual 15-residue N' loop extension. Structure-based experiments showed that PstS-mediated phosphate uptake and biofilm formation are in fact two distinct functions. Specifically, a point mutation that abrogated phosphate binding did not eliminate biofilm formation; conversely, truncation of the N' loop diminished the ability of PA to form biofilms but had no effect on phosphate binding and uptake. This places PstS at a junction that separately controls phosphate sensing and uptake and the ultrastructure organization of bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes , Proteínas de Ligação a Fosfato/metabolismo , Fosfatos/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/química , Sequência de Bases , Primers do DNA , Proteínas de Ligação a Fosfato/química , Conformação Proteica , Pseudomonas aeruginosa/fisiologia
3.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 7): 906-10, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25005086

RESUMO

Pseudomonas aeruginosa (PA) infections pose a serious threat to human health. PA is a leading cause of fatal lung infections in cystic fibrosis and immune-suppressed patients, of sepsis in burn victims and of nosocomial infections. An important element in PA virulence is its ability to establish biofilms that evade suppression by the host's immune system and antibiotics. PstS, a periplasmic subunit of the Pst phosphate-transport system of PA, plays a critical role in the establishment of biofilms. In some drug-resistant PA strains, PstS is secreted in large quantities from the bacteria, where it participates in the assembly of adhesion fibres that enhance bacterial virulence. In order to understand the dual function of PstS in biofilm formation and phosphate transport, the crystal structure of PA PstS was determined. Here, the overexpression in Escherichia coli and purification of PA PstS in the presence of phosphate are described. Two crystal forms were obtained using the vapour-diffusion method at 20°C and X-ray diffraction data were collected. The first crystal form belonged to the centred orthorhombic space group C2221, with unit-cell parameters a=67.5, b=151.3, c=108.9 Å. Assuming the presence of a dimer in the asymmetric unit gives a crystal volume per protein weight (VM) of 2.09 Å3 Da(-1) and a solvent content of 41%. The second crystal form belonged to the primitive orthorhombic space group P212121, with unit-cell parameters a=35.4, b=148.3, c=216.7 Å. Assuming the presence of a tetramer in the asymmetric unit gives a crystal volume per protein weight (VM) of 2.14 Å3 Da(-1) and a solvent content of 42.65%. A pseudo-translational symmetry is present in the P212121 crystal form which is consistent with a filamentous arrangement of PstS in the crystal lattice.


Assuntos
Biofilmes , Proteínas Periplásmicas de Ligação/química , Proteínas de Ligação a Fosfato/química , Pseudomonas aeruginosa/química , Sequência de Aminoácidos , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Dados de Sequência Molecular , Peso Molecular , Proteínas Periplásmicas de Ligação/genética , Proteínas Periplásmicas de Ligação/metabolismo , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA