RESUMO
Influenza poses a persistent health burden worldwide. To design equitable vaccines effective across all demographics, it is essential to better understand how host factors such as genetic background and aging affect the single-cell immune landscape of influenza infection. Cytometry by time-of-flight (CyTOF) represents a promising technique in this pursuit, but interpreting its large, high-dimensional data remains difficult. We have developed a new analytical approach, in silico gating annotating training elucidating (iGATE), based on probabilistic support vector machine classification. By rapidly and accurately "gating" tens of millions of cells in silico into user-defined types, iGATE enabled us to track 25 canonical immune cell types in mouse lung over the course of influenza infection. Applying iGATE to study effects of host genetic background, we show that the lower survival of C57BL/6 mice compared with BALB/c was associated with a more rapid accumulation of inflammatory cell types and decreased IL-10 expression. Furthermore, we demonstrate that the most prominent effect of aging is a defective T cell response, reducing survival of aged mice. Finally, iGATE reveals that the 25 canonical immune cell types exhibited differential influenza infection susceptibility and replication permissiveness in vivo, but neither property varied with host genotype or aging. The software is available at https://github.com/UmichWenLab/iGATE.
Assuntos
Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae , Análise de Célula Única , Animais , Camundongos , Infecções por Orthomyxoviridae/imunologia , Análise de Célula Única/métodos , Pulmão/imunologia , Pulmão/virologia , Pulmão/patologia , Influenza Humana/imunologia , Humanos , Modelos Animais de Doenças , Envelhecimento/imunologia , Envelhecimento/genética , Citometria de Fluxo/métodos , Linfócitos T/imunologia , Simulação por ComputadorRESUMO
Bacterial infections that are difficult to eradicate are often treated by sequentially exposing the bacteria to different antibiotics. Although effective, this approach can give rise to epigenetic or other phenomena that may help some cells adapt to and tolerate the antibiotics. Characteristics of such adapted cells are dormancy and low energy levels, which promote survival without lending long-term genetic resistance against antibiotics. In this work, we quantified motility in cells of Escherichia coli that adapted and survived sequential exposure to lethal doses of antibiotics. In populations that adapted to transcriptional inhibition by rifampicin, we observed that ~1 of 3 cells continued swimming for several hours in the presence of lethal concentrations of ampicillin. As motility is powered by proton motive force (PMF), our results suggested that many adapted cells retained a high PMF. Single-cell growth assays revealed that the high-PMF cells resuscitated and divided upon the removal of ampicillin, just as the low-PMF cells did, a behavior reminiscent of persister cells. Our results are consistent with the notion that cells in a clonal population may employ multiple different mechanisms to adapt to antibiotic stresses. Variable PMF is likely a feature of a bet-hedging strategy: a fraction of the adapted cell population lies dormant while the other fraction retains high PMF to be able to swim out of the deleterious environment. IMPORTANCE Bacterial cells with low PMF may survive antibiotic stress due to dormancy, which favors nonheritable resistance without genetic mutations or acquisitions. On the other hand, cells with high PMF are less tolerant, as PMF helps in the uptake of certain antibiotics. Here, we quantified flagellar motility as an indirect measure of the PMF in cells of Escherichia coli that had adapted to ampicillin. Despite the disadvantage of maintaining a high PMF in the presence of antibiotics, we observed high PMF in ~30% of the cells, as evidenced by their ability to swim rapidly for several hours. These and other results were consistent with the idea that antibiotic tolerance can arise via different mechanisms in a clonal population.
Assuntos
Antibacterianos , Força Próton-Motriz , Antibacterianos/farmacologia , Escherichia coli/genética , Resistência Microbiana a Medicamentos , Ampicilina/farmacologiaRESUMO
Little is known about the chemical and biological profiles of Dicranopteris linearis and Psychotria adenophylla. No previous studies have investigated alpha-glucosidase inhibition using extracts from D. linearis and P. adenophylla. In this paper, bioactive-guided isolation procedures were applied to the plants D. linearis and P. adenophylla based on alpha-glucosidase inhibition. From the most active fractions, 20 compounds (DL1-DL13 and PA1-PA7) were isolated. The chemical structures were elucidated using spectroscopic data and compared with those available in the literature. These compounds were evaluated for alpha-glucosidase inhibition, while a molecular docking study was performed to elucidate the mechanisms involved. Consequently, D. linearis and P. adenophylla might serve as a good potential for developing new antidiabetic preparations.