Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 17(45): e2103994, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34605163

RESUMO

The emergence of interlayer excitons (IEs) from atomic layered transition metal dichalcogenides (TMDCs) heterostructures has drawn tremendous attention due to their unique and exotic optoelectronic properties. Coupling the IEs into optical cavities provides distinctive electromagnetic environments which plays an important role in controlling multiple optical processes such as optical nonlinear generation or photoluminescence enhancement. Here, the integration of IEs in TMDCs into plasmonic nanocavities based on a nanocube on a metallic mirror is reported. Spectroscopic studies reveal an order of magnitude enhancement of the IE at room temperature and a 5-time enhancement in fluorescence at cryogenic temperatures. Cavity modeling reveals that the enhancement of the emission is attributed to both increased excitation efficiency and Purcell effect from the cavity. The results show a novel method to control the excitonic processes in TMDC heterostructures to build high performance photonics and optoelectronics devices.

2.
Nano Lett ; 19(8): 5417-5422, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31264881

RESUMO

Fluorescent nanoparticles with optically robust luminescence are imperative to applications in imaging and labeling. Here we demonstrate that hexagonal boron nitride (hBN) nanoparticles can be reliably produced using a scalable cryogenic exfoliation technique with sizes below 10 nm. The particles exhibit bright fluorescence generated by color centers that act as atomic-size quantum emitters. We analyze their optical properties, including emission wavelength, photon-statistics, and photodynamics, and show that they are suitable for far-field super-resolution fluorescence nanoscopy. Our results provide a foundation for exploration of hBN nanoparticles as candidates for bioimaging, labeling, as well as biomarkers that are suitable for quantum sensing.


Assuntos
Compostos de Boro/química , Nanopartículas/química , Temperatura Baixa , Fluorescência , Corantes Fluorescentes/química , Nanopartículas/ultraestrutura , Nanotecnologia/métodos , Tamanho da Partícula , Propriedades de Superfície
3.
ACS Appl Mater Interfaces ; 10(29): 24886-24891, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-29882642

RESUMO

Hexagonal boron nitride (hBN) mono and multilayers are promising hosts for room-temperature single photon emitters (SPEs). In this work we explore high-energy (∼MeV) electron irradiation as a means to generate stable SPEs in hBN. We investigate four types of exfoliated hBN flakes-namely, high-purity multilayers, isotopically pure hBN, carbon-rich hBN multilayers and monolayered material-and find that electron irradiation increases emitter concentrations dramatically in all samples. Furthermore, the engineered emitters are located throughout hBN flakes (not only at flake edges or grain boundaries) and do not require activation by high-temperature annealing of the host material after electron exposure. Our results provide important insights into controlled formation of hBN SPEs and may aid in identification of their crystallographic origin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA