Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 579(7798): E8, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32094663

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Nat Chem Biol ; 19(12): 1469-1479, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37349583

RESUMO

Serine hydrolases have important roles in signaling and human metabolism, yet little is known about their functions in gut commensal bacteria. Using bioinformatics and chemoproteomics, we identify serine hydrolases in the gut commensal Bacteroides thetaiotaomicron that are specific to the Bacteroidetes phylum. Two are predicted homologs of the human dipeptidyl peptidase 4 (hDPP4), a key enzyme that regulates insulin signaling. Our functional studies reveal that BT4193 is a true homolog of hDPP4 that can be inhibited by FDA-approved type 2 diabetes medications targeting hDPP4, while the other is a misannotated proline-specific triaminopeptidase. We demonstrate that BT4193 is important for envelope integrity and that loss of BT4193 reduces B. thetaiotaomicron fitness during in vitro growth within a diverse community. However, neither function is dependent on BT4193 proteolytic activity, suggesting a scaffolding or signaling function for this bacterial protease.


Assuntos
Bacteroides thetaiotaomicron , Diabetes Mellitus Tipo 2 , Humanos , Dipeptidil Peptidase 4/genética , Serina
3.
Nature ; 572(7768): 265-269, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31341280

RESUMO

De novo-designed proteins1-3 hold great promise as building blocks for synthetic circuits, and can complement the use of engineered variants of natural proteins4-7. One such designer protein-degronLOCKR, which is based on 'latching orthogonal cage-key proteins' (LOCKR) technology8-is a switch that degrades a protein of interest in vivo upon induction by a genetically encoded small peptide. Here we leverage the plug-and-play nature of degronLOCKR to implement feedback control of endogenous signalling pathways and synthetic gene circuits. We first generate synthetic negative and positive feedback in the yeast mating pathway by fusing degronLOCKR to endogenous signalling molecules, illustrating the ease with which this strategy can be used to rewire complex endogenous pathways. We next evaluate feedback control mediated by degronLOCKR on a synthetic gene circuit9, to quantify the feedback capabilities and operational range of the feedback control circuit. The designed nature of degronLOCKR proteins enables simple and rational modifications to tune feedback behaviour in both the synthetic circuit and the mating pathway. The ability to engineer feedback control into living cells represents an important milestone in achieving the full potential of synthetic biology10,11,12. More broadly, this work demonstrates the large and untapped potential of de novo design of proteins for generating tools that implement complex synthetic functionalities in cells for biotechnological and therapeutic applications.


Assuntos
Retroalimentação Fisiológica , Redes Reguladoras de Genes , Genes Fúngicos Tipo Acasalamento/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Transdução de Sinais , Biologia Sintética/métodos , Engenharia Celular , Redes Reguladoras de Genes/genética , Genes Fúngicos Tipo Acasalamento/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais/genética
4.
Nature ; 572(7768): 205-210, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31341284

RESUMO

Allosteric regulation of protein function is widespread in biology, but is challenging for de novo protein design as it requires the explicit design of multiple states with comparable free energies. Here we explore the possibility of designing switchable protein systems de novo, through the modulation of competing inter- and intramolecular interactions. We design a static, five-helix 'cage' with a single interface that can interact either intramolecularly with a terminal 'latch' helix or intermolecularly with a peptide 'key'. Encoded on the latch are functional motifs for binding, degradation or nuclear export that function only when the key displaces the latch from the cage. We describe orthogonal cage-key systems that function in vitro, in yeast and in mammalian cells with up to 40-fold activation of function by key. The ability to design switchable protein functions that are controlled by induced conformational change is a milestone for de novo protein design, and opens up new avenues for synthetic biology and cell engineering.


Assuntos
Regulação Alostérica , Engenharia de Proteínas/métodos , Proteínas/química , Proteínas/síntese química , Proteína 11 Semelhante a Bcl-2/metabolismo , Núcleo Celular/metabolismo , Sobrevivência Celular , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Ligação Proteica , Transporte Proteico , Proteínas/metabolismo , Proteólise , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Biologia Sintética
5.
BMC Biol ; 20(1): 285, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36527020

RESUMO

BACKGROUND: Ordered transposon-insertion collections, in which specific transposon-insertion mutants are stored as monocultures in a genome-scale collection, represent a promising tool for genetic dissection of human gut microbiota members. However, publicly available collections are scarce and the construction methodology remains in early stages of development. RESULTS: Here, we describe the assembly of a genome-scale ordered collection of transposon-insertion mutants in the model gut anaerobe Bacteroides thetaiotaomicron VPI-5482 that we created as a resource for the research community. We used flow cytometry to sort single cells from a pooled library, located mutants within this initial progenitor collection by applying a pooling strategy with barcode sequencing, and re-arrayed specific mutants to create a condensed collection with single-insertion strains covering >2500 genes. To demonstrate the potential of the condensed collection for phenotypic screening, we analyzed growth dynamics and cell morphology. We identified both growth defects and altered cell shape in mutants disrupting sphingolipid synthesis and thiamine scavenging. Finally, we analyzed the process of assembling the B. theta condensed collection to identify inefficiencies that limited coverage. We demonstrate as part of this analysis that the process of assembling an ordered collection can be accurately modeled using barcode sequencing data. CONCLUSION: We expect that utilization of this ordered collection will accelerate research into B. theta physiology and that lessons learned while assembling the collection will inform future efforts to assemble ordered mutant collections for an increasing number of gut microbiota members.


Assuntos
Bacteroides thetaiotaomicron , Humanos , Mutagênese Insercional , Bacteroides thetaiotaomicron/genética , Elementos de DNA Transponíveis , Biblioteca Gênica , Genoma Bacteriano
6.
Nat Microbiol ; 9(4): 1036-1048, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38486074

RESUMO

Microbial community dynamics arise through interspecies interactions, including resource competition, cross-feeding and pH modulation. The individual contributions of these mechanisms to community structure are challenging to untangle. Here we develop a framework to estimate multispecies niche overlaps by combining metabolomics data of individual species, growth measurements in spent media and mathematical models. We applied our framework to an in vitro model system comprising 15 human gut commensals in complex media and showed that a simple model of resource competition accounted for most pairwise interactions. Next, we built a coarse-grained consumer-resource model by grouping metabolomic features depleted by the same set of species and showed that this model predicted the composition of 2-member to 15-member communities with reasonable accuracy. Furthermore, we found that incorporation of cross-feeding and pH-mediated interactions improved model predictions of species coexistence. Our theoretical model and experimental framework can be applied to characterize interspecies interactions in bacterial communities in vitro.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Bactérias , Modelos Teóricos , Metabolômica
7.
bioRxiv ; 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36711771

RESUMO

Diet can impact host health through changes to the gut microbiota, yet we lack mechanistic understanding linking nutrient availability and microbiota composition. Here, we use thousands of microbial communities cultured in vitro from human feces to uncover simple assembly rules and develop a predictive model of community composition upon addition of single nutrients from central carbon metabolism to a complex medium. Community membership was largely determined by the donor feces, whereas relative abundances were determined by the supplemental carbon source. The absolute abundance of most taxa was independent of the supplementing nutrient, due to the ability of fast-growing organisms to quickly exhaust their niche in the complex medium and then exploit and monopolize the supplemental carbon source. Relative abundances of dominant taxa could be predicted from the nutritional preferences and growth dynamics of species in isolation, and exceptions were consistent with strain-level variation in growth capabilities. Our study reveals that community assembly follows simple rules of nutrient utilization dynamics and provides a predictive framework for manipulating gut commensal communities through nutritional perturbations.

8.
Cell Host Microbe ; 30(2): 260-272.e5, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35051349

RESUMO

Efforts to probe the role of the gut microbiota in disease would benefit from a system in which patient-derived bacterial communities can be studied at scale. We addressed this by validating a strategy to propagate phylogenetically complex, diverse, stable, and highly reproducible stool-derived communities in vitro. We generated hundreds of in vitro communities cultured from diverse stool samples in various media; certain media generally preserved inoculum composition, and inocula from different subjects yielded source-specific community compositions. Upon colonization of germ-free mice, community composition was maintained, and the host proteome resembled the host from which the community was derived. Treatment with ciprofloxacin in vivo increased susceptibility to Salmonella invasion in vitro, and the in vitro response to ciprofloxacin was predictive of compositional changes observed in vivo, including the resilience and sensitivity of each Bacteroides species. These findings demonstrate that stool-derived in vitro communities can serve as a powerful system for microbiota research.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Bactérias , Bacteroides , Fezes/microbiologia , Humanos , Camundongos
9.
Cell Syst ; 11(4): 336-353.e24, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32898473

RESUMO

Gene expression is thought to be affected not only by the concentration of transcription factors (TFs) but also the dynamics of their nuclear translocation. Testing this hypothesis requires direct control of TF dynamics. Here, we engineer CLASP, an optogenetic tool for rapid and tunable translocation of a TF of interest. Using CLASP fused to Crz1, we observe that, for the same integrated concentration of nuclear TF over time, changing input dynamics changes target gene expression: pulsatile inputs yield higher expression than continuous inputs, or vice versa, depending on the target gene. Computational modeling reveals that a dose-response saturating at low TF input can yield higher gene expression for pulsatile versus continuous input, and that multi-state promoter activation can yield the opposite behavior. Our integrated tool development and modeling approach characterize promoter responses to Crz1 nuclear translocation dynamics, extracting quantitative features that may help explain the differential expression of target genes.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Expressão Gênica , Optogenética/métodos , Regiões Promotoras Genéticas/genética , Transporte Proteico , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
10.
J Neurotrauma ; 37(7): 982-993, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31856650

RESUMO

Given the worldwide adverse impact of traumatic brain injury (TBI) on the human population, its diagnosis and prediction are of utmost importance. Historically, many studies have focused on associating head kinematics to brain injury risk. Recently, there has been a push toward using computationally expensive finite element (FE) models of the brain to create tissue deformation metrics of brain injury. Here, we develop a new brain injury metric, the brain angle metric (BAM), based on the dynamics of a 3 degree-of-freedom lumped parameter brain model. The brain model is built based on the measured natural frequencies of an FE brain model simulated with live human impact data. We show that it can be used to rapidly estimate peak brain strains experienced during head rotational accelerations that cause mild TBI. In our data set, the simplified model correlates with peak principal FE strain (R2 = 0.82). Further, coronal and axial brain model displacement correlated with fiber-oriented peak strain in the corpus callosum (R2 = 0.77). Our proposed injury metric BAM uses the maximum angle predicted by our brain model and is compared against a number of existing rotational and translational kinematic injury metrics on a data set of head kinematics from 27 clinically diagnosed injuries and 887 non-injuries. We found that BAM performed comparably to peak angular acceleration, translational acceleration, and angular velocity in classifying injury and non-injury events. Metrics that separated time traces into their directional components had improved model deviance compare with those that combined components into a single time trace magnitude. Our brain model can be used in future work to rapidly approximate the peak strain resulting from mild to moderate head impacts and to quickly assess brain injury risk.


Assuntos
Lesões Encefálicas Traumáticas/diagnóstico por imagem , Simulação por Computador , Análise de Elementos Finitos , Modelos Neurológicos , Bases de Dados Factuais , Imagem de Tensor de Difusão/métodos , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA