Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mutat ; 40(9): 1243-1251, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31070280

RESUMO

Pathogenic genetic variants often primarily affect splicing. However, it remains difficult to quantitatively predict whether and how genetic variants affect splicing. In 2018, the fifth edition of the Critical Assessment of Genome Interpretation proposed two splicing prediction challenges based on experimental perturbation assays: Vex-seq, assessing exon skipping, and MaPSy, assessing splicing efficiency. We developed a modular modeling framework, MMSplice, the performance of which was among the best on both challenges. Here we provide insights into the modeling assumptions of MMSplice and its individual modules. We furthermore illustrate how MMSplice can be applied in practice for individual genome interpretation, using the MMSplice VEP plugin and the Kipoi variant interpretation plugin, which are directly applicable to VCF files.


Assuntos
Biologia Computacional/métodos , Variação Genética , Splicing de RNA , Congressos como Assunto , Éxons , Predisposição Genética para Doença , Humanos , Íntrons , Modelos Genéticos , Software
2.
Hum Mutat ; 40(9): 1215-1224, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31301154

RESUMO

Precision medicine and sequence-based clinical diagnostics seek to predict disease risk or to identify causative variants from sequencing data. The Critical Assessment of Genome Interpretation (CAGI) is a community experiment consisting of genotype-phenotype prediction challenges; participants build models, undergo assessment, and share key findings. In the past, few CAGI challenges have addressed the impact of sequence variants on splicing. In CAGI5, two challenges (Vex-seq and MaPSY) involved prediction of the effect of variants, primarily single-nucleotide changes, on splicing. Although there are significant differences between these two challenges, both involved prediction of results from high-throughput exon inclusion assays. Here, we discuss the methods used to predict the impact of these variants on splicing, their performance, strengths, and weaknesses, and prospects for predicting the impact of sequence variation on splicing and disease phenotypes.


Assuntos
Processamento Alternativo , Biologia Computacional/métodos , Mutação , Proteínas/genética , Animais , Congressos como Assunto , Aptidão Genética , Humanos , Modelos Genéticos , Homologia de Sequência do Ácido Nucleico
3.
Genome Biol ; 20(1): 48, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30823901

RESUMO

Predicting the effects of genetic variants on splicing is highly relevant for human genetics. We describe the framework MMSplice (modular modeling of splicing) with which we built the winning model of the CAGI5 exon skipping prediction challenge. The MMSplice modules are neural networks scoring exon, intron, and splice sites, trained on distinct large-scale genomics datasets. These modules are combined to predict effects of variants on exon skipping, splice site choice, splicing efficiency, and pathogenicity, with matched or higher performance than state-of-the-art. Our models, available in the repository Kipoi, apply to variants including indels directly from VCF files.


Assuntos
Processamento Alternativo , Variação Genética , Modelos Genéticos , Redes Neurais de Computação , Doenças Genéticas Inatas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA