RESUMO
The isocortex and hippocampal formation (HPF) in the mammalian brain play critical roles in perception, cognition, emotion, and learning. We profiled â¼1.3 million cells covering the entire adult mouse isocortex and HPF and derived a transcriptomic cell-type taxonomy revealing a comprehensive repertoire of glutamatergic and GABAergic neuron types. Contrary to the traditional view of HPF as having a simpler cellular organization, we discover a complete set of glutamatergic types in HPF homologous to all major subclasses found in the six-layered isocortex, suggesting that HPF and the isocortex share a common circuit organization. We also identify large-scale continuous and graded variations of cell types along isocortical depth, across the isocortical sheet, and in multiple dimensions in hippocampus and subiculum. Overall, our study establishes a molecular architecture of the mammalian isocortex and hippocampal formation and begins to shed light on its underlying relationship with the development, evolution, connectivity, and function of these two brain structures.
Assuntos
Hipocampo/citologia , Neocórtex/citologia , Transcriptoma/genética , Animais , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/metabolismo , Ácido Glutâmico/metabolismo , Camundongos Endogâmicos C57BL , Camundongos TransgênicosRESUMO
The ventrolateral subdivision of the ventromedial hypothalamus (VMHvl) contains â¼4,000 neurons that project to multiple targets and control innate social behaviors including aggression and mounting. However, the number of cell types in VMHvl and their relationship to connectivity and behavioral function are unknown. We performed single-cell RNA sequencing using two independent platforms-SMART-seq (â¼4,500 neurons) and 10x (â¼78,000 neurons)-and investigated correspondence between transcriptomic identity and axonal projections or behavioral activation, respectively. Canonical correlation analysis (CCA) identified 17 transcriptomic types (T-types), including several sexually dimorphic clusters, the majority of which were validated by seqFISH. Immediate early gene analysis identified T-types exhibiting preferential responses to intruder males versus females but only rare examples of behavior-specific activation. Unexpectedly, many VMHvl T-types comprise a mixed population of neurons with different projection target preferences. Overall our analysis revealed that, surprisingly, few VMHvl T-types exhibit a clear correspondence with behavior-specific activation and connectivity.
Assuntos
Hipotálamo/citologia , Neurônios/classificação , Comportamento Social , Animais , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Hipotálamo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/fisiologia , Comportamento Sexual Animal , Análise de Célula Única , TranscriptomaRESUMO
Modern genetic approaches are powerful in providing access to diverse cell types in the brain and facilitating the study of their function. Here, we report a large set of driver and reporter transgenic mouse lines, including 23 new driver lines targeting a variety of cortical and subcortical cell populations and 26 new reporter lines expressing an array of molecular tools. In particular, we describe the TIGRE2.0 transgenic platform and introduce Cre-dependent reporter lines that enable optical physiology, optogenetics, and sparse labeling of genetically defined cell populations. TIGRE2.0 reporters broke the barrier in transgene expression level of single-copy targeted-insertion transgenesis in a wide range of neuronal types, along with additional advantage of a simplified breeding strategy compared to our first-generation TIGRE lines. These novel transgenic lines greatly expand the repertoire of high-precision genetic tools available to effectively identify, monitor, and manipulate distinct cell types in the mouse brain.
Assuntos
Encéfalo/metabolismo , Técnicas de Inativação de Genes/métodos , Genes Reporter , Animais , Encéfalo/citologia , Cálcio/metabolismo , Linhagem Celular , Hibridização in Situ Fluorescente , Luz , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Neurônios/metabolismo , Optogenética , RNA não Traduzido/genética , Transgenes/genéticaRESUMO
Dendritic and axonal morphology reflects the input and output of neurons and is a defining feature of neuronal types1,2, yet our knowledge of its diversity remains limited. Here, to systematically examine complete single-neuron morphologies on a brain-wide scale, we established a pipeline encompassing sparse labelling, whole-brain imaging, reconstruction, registration and analysis. We fully reconstructed 1,741 neurons from cortex, claustrum, thalamus, striatum and other brain regions in mice. We identified 11 major projection neuron types with distinct morphological features and corresponding transcriptomic identities. Extensive projectional diversity was found within each of these major types, on the basis of which some types were clustered into more refined subtypes. This diversity follows a set of generalizable principles that govern long-range axonal projections at different levels, including molecular correspondence, divergent or convergent projection, axon termination pattern, regional specificity, topography, and individual cell variability. Although clear concordance with transcriptomic profiles is evident at the level of major projection type, fine-grained morphological diversity often does not readily correlate with transcriptomic subtypes derived from unsupervised clustering, highlighting the need for single-cell cross-modality studies. Overall, our study demonstrates the crucial need for quantitative description of complete single-cell anatomy in cell-type classification, as single-cell morphological diversity reveals a plethora of ways in which different cell types and their individual members may contribute to the configuration and function of their respective circuits.
Assuntos
Encéfalo/citologia , Forma Celular , Neurônios/classificação , Neurônios/metabolismo , Análise de Célula Única , Atlas como Assunto , Biomarcadores/metabolismo , Encéfalo/anatomia & histologia , Encéfalo/embriologia , Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Neocórtex/anatomia & histologia , Neocórtex/citologia , Neocórtex/embriologia , Neocórtex/metabolismo , Neurogênese , Neuroglia/citologia , Neurônios/citologia , RNA-Seq , Reprodutibilidade dos TestesRESUMO
Single-cell transcriptomics can provide quantitative molecular signatures for large, unbiased samples of the diverse cell types in the brain1-3. With the proliferation of multi-omics datasets, a major challenge is to validate and integrate results into a biological understanding of cell-type organization. Here we generated transcriptomes and epigenomes from more than 500,000 individual cells in the mouse primary motor cortex, a structure that has an evolutionarily conserved role in locomotion. We developed computational and statistical methods to integrate multimodal data and quantitatively validate cell-type reproducibility. The resulting reference atlas-containing over 56 neuronal cell types that are highly replicable across analysis methods, sequencing technologies and modalities-is a comprehensive molecular and genomic account of the diverse neuronal and non-neuronal cell types in the mouse primary motor cortex. The atlas includes a population of excitatory neurons that resemble pyramidal cells in layer 4 in other cortical regions4. We further discovered thousands of concordant marker genes and gene regulatory elements for these cell types. Our results highlight the complex molecular regulation of cell types in the brain and will directly enable the design of reagents to target specific cell types in the mouse primary motor cortex for functional analysis.
Assuntos
Epigenômica , Perfilação da Expressão Gênica , Córtex Motor/citologia , Neurônios/classificação , Análise de Célula Única , Transcriptoma , Animais , Atlas como Assunto , Conjuntos de Dados como Assunto , Epigênese Genética , Feminino , Masculino , Camundongos , Córtex Motor/anatomia & histologia , Neurônios/citologia , Neurônios/metabolismo , Especificidade de Órgãos , Reprodutibilidade dos TestesRESUMO
Elucidating the cellular architecture of the human cerebral cortex is central to understanding our cognitive abilities and susceptibility to disease. Here we used single-nucleus RNA-sequencing analysis to perform a comprehensive study of cell types in the middle temporal gyrus of human cortex. We identified a highly diverse set of excitatory and inhibitory neuron types that are mostly sparse, with excitatory types being less layer-restricted than expected. Comparison to similar mouse cortex single-cell RNA-sequencing datasets revealed a surprisingly well-conserved cellular architecture that enables matching of homologous types and predictions of properties of human cell types. Despite this general conservation, we also found extensive differences between homologous human and mouse cell types, including marked alterations in proportions, laminar distributions, gene expression and morphology. These species-specific features emphasize the importance of directly studying human brain.
Assuntos
Astrócitos/classificação , Evolução Biológica , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Neurônios/classificação , Adolescente , Adulto , Idoso , Animais , Astrócitos/citologia , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Inibição Neural , Neurônios/citologia , Análise de Componente Principal , RNA-Seq , Análise de Célula Única , Especificidade da Espécie , Transcriptoma/genética , Adulto JovemRESUMO
Activity in the motor cortex predicts movements, seconds before they are initiated. This preparatory activity has been observed across cortical layers, including in descending pyramidal tract neurons in layer 5. A key question is how preparatory activity is maintained without causing movement, and is ultimately converted to a motor command to trigger appropriate movements. Here, using single-cell transcriptional profiling and axonal reconstructions, we identify two types of pyramidal tract neuron. Both types project to several targets in the basal ganglia and brainstem. One type projects to thalamic regions that connect back to motor cortex; populations of these neurons produced early preparatory activity that persisted until the movement was initiated. The second type projects to motor centres in the medulla and mainly produced late preparatory activity and motor commands. These results indicate that two types of motor cortex output neurons have specialized roles in motor control.
Assuntos
Vias Eferentes/citologia , Vias Eferentes/fisiologia , Córtex Motor/citologia , Córtex Motor/fisiologia , Movimento/fisiologia , Animais , Gânglios da Base/citologia , Tronco Encefálico/citologia , Ácido Glutâmico/metabolismo , Bulbo/citologia , Camundongos , Neurônios/metabolismo , Células Piramidais/classificação , Células Piramidais/fisiologia , Análise de Célula Única , TranscriptomaRESUMO
The neocortex contains a multitude of cell types that are segregated into layers and functionally distinct areas. To investigate the diversity of cell types across the mouse neocortex, here we analysed 23,822 cells from two areas at distant poles of the mouse neocortex: the primary visual cortex and the anterior lateral motor cortex. We define 133 transcriptomic cell types by deep, single-cell RNA sequencing. Nearly all types of GABA (γ-aminobutyric acid)-containing neurons are shared across both areas, whereas most types of glutamatergic neurons were found in one of the two areas. By combining single-cell RNA sequencing and retrograde labelling, we match transcriptomic types of glutamatergic neurons to their long-range projection specificity. Our study establishes a combined transcriptomic and projectional taxonomy of cortical cell types from functionally distinct areas of the adult mouse cortex.
Assuntos
Perfilação da Expressão Gênica , Neocórtex/citologia , Neocórtex/metabolismo , Animais , Biomarcadores/análise , Feminino , Neurônios GABAérgicos/metabolismo , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Córtex Motor/anatomia & histologia , Córtex Motor/citologia , Córtex Motor/metabolismo , Neocórtex/anatomia & histologia , Especificidade de Órgãos , Análise de Sequência de RNA , Análise de Célula Única , Córtex Visual/anatomia & histologia , Córtex Visual/citologia , Córtex Visual/metabolismoRESUMO
In humans and other mammalian species, lesions in the preoptic area of the hypothalamus cause profound sleep impairment, indicating a crucial role of the preoptic area in sleep generation. However, the underlying circuit mechanism remains poorly understood. Electrophysiological recordings and c-Fos immunohistochemistry have shown the existence of sleep-active neurons in the preoptic area, especially in the ventrolateral preoptic area and median preoptic nucleus. Pharmacogenetic activation of c-Fos-labelled sleep-active neurons has been shown to induce sleep. However, the sleep-active neurons are spatially intermingled with wake-active neurons, making it difficult to target the sleep neurons specifically for circuit analysis. Here we identify a population of preoptic area sleep neurons on the basis of their projection target and discover their molecular markers. Using a lentivirus expressing channelrhodopsin-2 or a light-activated chloride channel for retrograde labelling, bidirectional optogenetic manipulation, and optrode recording, we show that the preoptic area GABAergic neurons projecting to the tuberomammillary nucleus are both sleep active and sleep promoting. Furthermore, translating ribosome affinity purification and single-cell RNA sequencing identify candidate markers for these neurons, and optogenetic and pharmacogenetic manipulations demonstrate that several peptide markers (cholecystokinin, corticotropin-releasing hormone, and tachykinin 1) label sleep-promoting neurons. Together, these findings provide easy genetic access to sleep-promoting preoptic area neurons and a valuable entry point for dissecting the sleep control circuit.
Assuntos
Técnicas de Rastreamento Neuroanatômico , Neurônios/fisiologia , Área Pré-Óptica/citologia , Área Pré-Óptica/fisiologia , Sono/fisiologia , Transcriptoma , Animais , Biomarcadores/análise , Channelrhodopsins , Canais de Cloreto/metabolismo , Canais de Cloreto/efeitos da radiação , Colecistocinina/análise , Colecistocinina/genética , Hormônio Liberador da Corticotropina/análise , Hormônio Liberador da Corticotropina/genética , Feminino , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/efeitos da radiação , Região Hipotalâmica Lateral/fisiologia , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/efeitos da radiação , Optogenética , Área Pré-Óptica/efeitos dos fármacos , Área Pré-Óptica/efeitos da radiação , Proteínas Proto-Oncogênicas c-fos/análise , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ribossomos/metabolismo , Análise de Sequência de RNA , Análise de Célula Única , Sono/efeitos dos fármacos , Sono/efeitos da radiação , Taquicininas/análise , Taquicininas/genética , Vigília/fisiologia , Vigília/efeitos da radiaçãoRESUMO
Comprehensive knowledge of the brain's wiring diagram is fundamental for understanding how the nervous system processes information at both local and global scales. However, with the singular exception of the C. elegans microscale connectome, there are no complete connectivity data sets in other species. Here we report a brain-wide, cellular-level, mesoscale connectome for the mouse. The Allen Mouse Brain Connectivity Atlas uses enhanced green fluorescent protein (EGFP)-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain. This systematic and standardized approach allows spatial registration of individual experiments into a common three dimensional (3D) reference space, resulting in a whole-brain connectivity matrix. A computational model yields insights into connectional strength distribution, symmetry and other network properties. Virtual tractography illustrates 3D topography among interconnected regions. Cortico-thalamic pathway analysis demonstrates segregation and integration of parallel pathways. The Allen Mouse Brain Connectivity Atlas is a freely available, foundational resource for structural and functional investigations into the neural circuits that support behavioural and cognitive processes in health and disease.
Assuntos
Encéfalo/anatomia & histologia , Encéfalo/citologia , Conectoma , Animais , Atlas como Assunto , Axônios/fisiologia , Córtex Cerebral/citologia , Corpo Estriado/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Técnicas de Rastreamento Neuroanatômico , Tálamo/citologiaRESUMO
The mammalian brain is composed of millions to billions of cells that are organized into numerous cell types with specific spatial distribution patterns and structural and functional properties. An essential step towards understanding brain function is to obtain a parts list, i.e., a catalog of cell types, of the brain. Here, we report a comprehensive and high-resolution transcriptomic and spatial cell type atlas for the whole adult mouse brain. The cell type atlas was created based on the combination of two single-cell-level, whole-brain-scale datasets: a single-cell RNA-sequencing (scRNA-seq) dataset of ~7 million cells profiled, and a spatially resolved transcriptomic dataset of ~4.3 million cells using MERFISH. The atlas is hierarchically organized into five nested levels of classification: 7 divisions, 32 classes, 306 subclasses, 1,045 supertypes and 5,200 clusters. We systematically analyzed the neuronal, non-neuronal, and immature neuronal cell types across the brain and identified a high degree of correspondence between transcriptomic identity and spatial specificity for each cell type. The results reveal unique features of cell type organization in different brain regions, in particular, a dichotomy between the dorsal and ventral parts of the brain: the dorsal part contains relatively fewer yet highly divergent neuronal types, whereas the ventral part contains more numerous neuronal types that are more closely related to each other. We also systematically characterized cell-type specific expression of neurotransmitters, neuropeptides, and transcription factors. The study uncovered extraordinary diversity and heterogeneity in neurotransmitter and neuropeptide expression and co-expression patterns in different cell types across the brain, suggesting they mediate a myriad of modes of intercellular communications. Finally, we found that transcription factors are major determinants of cell type classification in the adult mouse brain and identified a combinatorial transcription factor code that defines cell types across all parts of the brain. The whole-mouse-brain transcriptomic and spatial cell type atlas establishes a benchmark reference atlas and a foundational resource for deep and integrative investigations of cell type and circuit function, development, and evolution of the mammalian brain.
RESUMO
Although single-cell transcriptomics of the neocortex has uncovered more than 300 putative cell types, whether this molecular classification predicts distinct functional roles is unclear. We combined two-photon calcium imaging with spatial transcriptomics to functionally and molecularly investigate cortical circuits. We characterized behavior-related responses across major neuronal subclasses in layers 2 or 3 of the primary somatosensory cortex as mice performed a tactile working memory task. We identified an excitatory intratelencephalic cell type, Baz1a, that exhibits high tactile feature selectivity. Baz1a neurons homeostatically maintain stimulus responsiveness during altered experience and show persistent enrichment of subsets of immediately early genes. Functional and anatomical connectivity reveals that Baz1a neurons residing in upper portions of layers 2 or 3 preferentially innervate somatostatin-expressing inhibitory neurons. This motif defines a circuit hub that orchestrates local sensory processing in superficial layers of the neocortex.
Assuntos
Rede Nervosa/fisiologia , Neurônios/fisiologia , Córtex Somatossensorial/citologia , Córtex Somatossensorial/fisiologia , Animais , Comportamento Animal , Cálcio/análise , Expressão Gênica , Genes fos , Memória de Curto Prazo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibição Neural , Tato , Transcriptoma , Vibrissas/fisiologiaRESUMO
Cellular responses to mechanical perturbation are vital to cell physiology. In particular, migrating cells have been shown to sense substrate stiffness and alter cell morphology and speed. Zyxin is a focal adhesion protein that responds to external mechanical forces; however, the mechanisms of zyxin recruitment at force-bearing sites are unknown. Using force-sensing microfabricated substrates, we simultaneously measured traction force and zyxin recruitment at force-bearing sites. GFP-tagged zyxin accumulates at force-bearing sites at the leading edge, but not at the trailing edge, of migrating epithelial cells. Zyxin recruitment at force-bearing sites depends on Rho-kinase and myosin II activation, suggesting that zyxin responds not only to the externally applied force, as previously shown, but also to the internally generated actin-myosin force. Zyxin in turn recruits vasodilator-stimulated phosphoprotein, a regulator of actin assembly, to force-bearing sites. To dissect the domains of zyxin that are essential for this unique force-dependent accumulation, we generated two zyxin truncation mutants: one lacking the LIM domain (ΔLIM) and one containing only the LIM domain with all three LIM motifs (LIM). GFP-tagged ΔLIM does not localize to the force-bearing sites, but GFP-tagged zyxin LIM-domain is sufficient for the recruitment to and dynamics at force-bearing focal adhesions. Furthermore, one or two LIM motifs are not sufficient for force-dependent accumulation, suggesting that all three LIM motifs are required. Therefore, the LIM domain of zyxin recruits zyxin to force-bearing sites at the leading edge of migrating cells.
Assuntos
Movimento Celular , Fenômenos Mecânicos , Zixina/química , Zixina/metabolismo , Motivos de Aminoácidos , Animais , Sítios de Ligação , Fenômenos Biomecânicos , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Cães , Humanos , Proteínas dos Microfilamentos/metabolismo , Miosina Tipo II/metabolismo , Fosfoproteínas/metabolismo , Estrutura Terciária de Proteína , Quinases Associadas a rho/metabolismoRESUMO
Cytoskeletal regulation of cell adhesion is vital to the organization of multicellular structures. The focal adhesion protein zyxin emerged as a key regulator of actin assembly because zyxin recruits Enabled/vasodilator-stimulated phospho-proteins (Ena/VASP) to promote actin assembly. Zyxin also localizes to the sites of cell-cell adhesion and is thought to promote actin assembly with Ena/VASP. Using shRNA targeted to zyxin, we analyzed the roles of zyxin at adhesive contacts. In zyxin-deficient cells, the actin assembly at both focal adhesion and cell-cell adhesion was limited, but their migration rate was unchanged. Cell spreading on E-cadherin-coated surfaces and the formation of cell clusters were slower for zyxin-deficient cells than wild type cells. By ablating a single cell within a cell monolayer, we quantified the rate of wound closure driven by a contractile circumferential actin ring. Zyxin-deficient cells failed to recruit VASP to cell-cell junctions at the wound edge and had a slower wound closure rate than wild type cells. Our results suggest that, by recruiting VASP, zyxin regulates actin assembly at the sites of force-bearing cell-cell adhesion.
Assuntos
Movimento Celular/fisiologia , Proteínas do Citoesqueleto/fisiologia , Proteínas de Ligação a DNA/metabolismo , Adesões Focais/metabolismo , Actinas/metabolismo , Animais , Western Blotting , Caderinas/metabolismo , Adesão Celular/genética , Adesão Celular/fisiologia , Comunicação Celular/genética , Comunicação Celular/fisiologia , Linhagem Celular , Movimento Celular/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Cães , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Junções Intercelulares/metabolismo , Microscopia Confocal , Interferência de RNARESUMO
Multiplexed fluorescence in situ hybridization techniques have enabled cell-type identification, linking transcriptional heterogeneity with spatial heterogeneity of cells. However, inaccurate cell segmentation reduces the efficacy of cell-type identification and tissue characterization. Here, we present a method called Spot-based Spatial cell-type Analysis by Multidimensional mRNA density estimation (SSAM), a robust cell segmentation-free computational framework for identifying cell-types and tissue domains in 2D and 3D. SSAM is applicable to a variety of in situ transcriptomics techniques and capable of integrating prior knowledge of cell types. We apply SSAM to three mouse brain tissue images: the somatosensory cortex imaged by osmFISH, the hypothalamic preoptic region by MERFISH, and the visual cortex by multiplexed smFISH. Here, we show that SSAM detects regions occupied by known cell types that were previously missed and discovers new cell types.
Assuntos
Encéfalo/citologia , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Hibridização in Situ Fluorescente/métodos , Análise de Célula Única/métodos , Algoritmos , Animais , Encéfalo/diagnóstico por imagem , Simulação por Computador , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Área Pré-Óptica/citologia , Área Pré-Óptica/diagnóstico por imagem , Córtex Somatossensorial/citologia , Córtex Somatossensorial/diagnóstico por imagem , Transcriptoma/genética , Córtex Visual/citologia , Córtex Visual/diagnóstico por imagemRESUMO
Abundant evidence supports the presence of at least three distinct types of thalamocortical (TC) neurons in the primate dorsal lateral geniculate nucleus (dLGN) of the thalamus, the brain region that conveys visual information from the retina to the primary visual cortex (V1). Different types of TC neurons in mice, humans, and macaques have distinct morphologies, distinct connectivity patterns, and convey different aspects of visual information to the cortex. To investigate the molecular underpinnings of these cell types, and how these relate to differences in dLGN between human, macaque, and mice, we profiled gene expression in single nuclei and cells using RNA-sequencing. These efforts identified four distinct types of TC neurons in the primate dLGN: magnocellular (M) neurons, parvocellular (P) neurons, and two types of koniocellular (K) neurons. Despite extensively documented morphological and physiological differences between M and P neurons, we identified few genes with significant differential expression between transcriptomic cell types corresponding to these two neuronal populations. Likewise, the dominant feature of TC neurons of the adult mouse dLGN is high transcriptomic similarity, with an axis of heterogeneity that aligns with core vs. shell portions of mouse dLGN. Together, these data show that transcriptomic differences between principal cell types in the mature mammalian dLGN are subtle relative to the observed differences in morphology and cortical projection targets. Finally, alignment of transcriptome profiles across species highlights expanded diversity of GABAergic neurons in primate versus mouse dLGN and homologous types of TC neurons in primates that are distinct from TC neurons in mouse.
Assuntos
Núcleo Celular/genética , Corpos Geniculados/metabolismo , Neurônios/metabolismo , Córtex Visual/metabolismo , Animais , Perfilação da Expressão Gênica , Humanos , Macaca , Camundongos , RNA-Seq , Análise de Célula Única , Tálamo/metabolismo , Vias Visuais/metabolismoRESUMO
The evolutionarily conserved default mode network (DMN) is a distributed set of brain regions coactivated during resting states that is vulnerable to brain disorders. How disease affects the DMN is unknown, but detailed anatomical descriptions could provide clues. Mice offer an opportunity to investigate structural connectivity of the DMN across spatial scales with cell-type resolution. We co-registered maps from functional magnetic resonance imaging and axonal tracing experiments into the 3D Allen mouse brain reference atlas. We find that the mouse DMN consists of preferentially interconnected cortical regions. As a population, DMN layer 2/3 (L2/3) neurons project almost exclusively to other DMN regions, whereas L5 neurons project in and out of the DMN. In the retrosplenial cortex, a core DMN region, we identify two L5 projection types differentiated by in- or out-DMN targets, laminar position, and gene expression. These results provide a multi-scale description of the anatomical correlates of the mouse DMN.
Assuntos
Encéfalo/diagnóstico por imagem , Rede de Modo Padrão/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Neurônios/fisiologia , Animais , Encéfalo/citologia , Conectoma , Rede de Modo Padrão/citologia , Imageamento por Ressonância Magnética , Camundongos , Rede Nervosa/citologia , Neurônios/citologiaRESUMO
Rapid cell type identification by new genomic single-cell analysis methods has not been met with efficient experimental access to these cell types. To facilitate access to specific neural populations in mouse cortex, we collected chromatin accessibility data from individual cells and identified enhancers specific for cell subclasses and types. When cloned into recombinant adeno-associated viruses (AAVs) and delivered to the brain, these enhancers drive transgene expression in specific cortical cell subclasses. We extensively characterized several enhancer AAVs to show that they label different projection neuron subclasses as well as a homologous neuron subclass in human cortical slices. We also show how coupling enhancer viruses expressing recombinases to a newly generated transgenic mouse, Ai213, enables strong labeling of three different neuronal classes/subclasses in the brain of a single transgenic animal. This approach combines unprecedented flexibility with specificity for investigation of cell types in the mouse brain and beyond.
Assuntos
Encéfalo/citologia , Neurônios/classificação , Neurônios/citologia , Análise de Célula Única/métodos , Animais , Conjuntos de Dados como Assunto , Dependovirus , Humanos , Camundongos , Camundongos TransgênicosRESUMO
Subicular regions play important roles in spatial processing and many cognitive functions, and these are mainly attributed to the subiculum (Sub) rather than the prosubiculum (PS). Using single-cell RNA sequencing, we identify 27 transcriptomic cell types residing in sub-domains of the Sub and PS. Based on in situ expression of reliable transcriptomic markers, the precise boundaries of the Sub and PS are consistently defined along the dorsoventral axis. Using these borders to evaluate Cre-line specificity and tracer injections, we find bona fide Sub projections topographically to structures important for spatial processing and navigation. In contrast, the PS sends its outputs to widespread brain regions crucial for motivation, emotion, reward, stress, anxiety, and fear. The Sub and PS, respectively, dominate dorsal and ventral subicular regions and receive different afferents. These results reveal two molecularly and anatomically distinct circuits centered in the Sub and PS, respectively, providing a consistent explanation for historical data and a clearer foundation for future studies.
Assuntos
Hipocampo/fisiopatologia , Vias Neurais/metabolismo , Transcriptoma/genética , AnimaisRESUMO
Apoptosis, or genetically programmed cell death, is a crucial cellular process that maintains the balance between life and death in cells. The precise molecular mechanism of apoptosis signaling and the manner in which type 1 and type 2 pathways of the apoptosis signaling network are differentially activated under distinct apoptotic stimuli is poorly understood. Based on Monte Carlo stochastic simulations, we show that the type 1 pathway becomes activated under strong apoptotic stimuli, whereas the type 2 mitochondrial pathway dominates apoptotic signaling in response to a weak death signal. Our results also show signaling in the type 2 pathway is stochastic; the population average over many cells does not capture the cell-to-cell fluctuations in the time course (approximately 1-10 h) of downstream caspase-3 activation. On the contrary, the probability distribution of caspase-3 activation for the mitochondrial pathway shows a distinct bimodal behavior that can be used to characterize the stochastic signaling in type 2 apoptosis and other similar complex signaling processes. Interestingly, such stochastic fluctuations in apoptosis signaling occur even in the presence of large numbers of signaling molecules.