Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 698: 149538, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38271836

RESUMO

Due to the large size and high flexibility of the catalytic active site of BACE1 enzyme, the development of nonpeptide inhibitors with optimal pharmacological properties is still highly demanding. In this work, we have discovered 2-aminobenzimidazole-containg ether scaffolds having potent and selective inhibitory potentials against BACE1 enzyme. We have synthesized novel 29 compounds and optimization of aryl linker region resulted in highly potent BACE1 inhibitory activities with EC50 values of 0.05-2.71 µM. The aryloxy-phenyl analogs 20j showed the EC50 value as low as 0.07 µM in the enzyme assay, whereas, the benzyloxyphenyl dervative 24b was comparatively less effective in the enzyme assay. But interestingly the latter was more effective in the cell assay (EC50 value 1.2 µM). While comparing synthesized derivatives in the cell assay using PC12-APPSW cell, compound 27f appeared as the most potent BACE1 inhibitor having EC50 value 0.7 µM. This scaffold also showed high selectivity over BACE2 enzyme and cathepsin D. Furthermore, the research findings were bolstered through the incorporation of molecular docking, molecular dynamics, and DFT studies. We firmly believe that these discoveries will pave the way for the development of a novel class of small-molecule selective BACE1 inhibitors.


Assuntos
Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Benzimidazóis , Humanos , Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Benzimidazóis/farmacologia , Éteres , Simulação de Acoplamento Molecular , Desenho de Fármacos
2.
RSC Adv ; 14(7): 4533-4542, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38312723

RESUMO

This study presents the process of extracting lignin from sugarcane bagasse collected in the Mekong Delta, Vietnam by the alkali method. NaOH has been used as an effective, environmentally friendly chemical to enhance the extraction process. The obtained lignin was applied for methylene blue (MB) and hexavalent chromium (Cr(vi)) removal. Factors influencing lignin extraction and adsorption processes of MB and Cr(vi) were investigated, showcasing the sustainable reusability of lignin extracted from sugarcane bagasse. Lignin characterization was also carried out by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA) techniques. The results showed that the extracted lignin content reached 38.61% under optimal conditions (NaOH concentration of 10%, reaction temperature of 90 °C and reaction time of 90 min). The adsorption efficiency and capacity of lignin reached 90.90% and 9.09 mg g-1 for MB and 80.10% and 28.04 mg g-1 for Cr(vi), respectively, under optimum adsorption conditions (pH, adsorption time, initial methylene blue concentration, and used lignin content). The adsorption process obeyed Langmuir adsorption and was principally physical adsorption. These findings prove sugarcane bagasse based lignin as a cheap and efficient adsorbent for MB and Cr(vi) removal, which contributes to the utilization of the abundant agricultural by-product for wastewater treatment.

3.
Heliyon ; 10(18): e37860, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39315126

RESUMO

The study was carried out with the goal of synthesizing composite bead of cellulose, chitosan functionalized by sodium alginate using as an efficient and applicable adsorbent for methylene blue removal. Fabricating parameters of the material synthesis process like cellulose mass, sodium hydroxide concentration, immersing time and sodium alginate concentration were assessed in detail. The dye adsorption performance in water under the influence of pH, contact time, dye initial concentration, the material mass, shaking speed, temperature was also thoroughly evaluated. The results of advanced analyses showed that the beads were successfully synthesized with a rough surface and mesoporous structure. The adsorption isotherm and adsorption kinetics of dye adsorption process exhibited that the process was consistent with the Freundlich adsorption isotherm and the pseudo-second-order kinetic model, indicating a favorable physical adsorption process with multilayer of the dye on the adsorbent surface. The intra-particle diffusion model showed the strong dye adsorption by the beads occurred during the first two and half hours. The adsorbent could maintain its adsorption performance of 86 % for three times of regeneration. Finally, this study provided a recyclable and effective adsorbent for dyes separation from water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA