Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(30): 21120-21128, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39034829

RESUMO

Since the concept of "multiferroic" was first proposed in 1968, the coupling effect between different ferroic orders has attracted great interest in energy, information, and biomedical fields. However, the fully ferroelectric-fully ferroelastic effect has never been experimentally observed in hybrid perovskites, even though this effect was predicted to exist half a century ago. Realizing such cross-linking effects of polarization vectors and strain tensors has always been a huge challenge because of the complex difference in these two ferroic origins. Here, we report a multiferroic with full ferroelectricity and full ferroelasticity in two-dimensional (2D) hybrid perovskites based on ferroelectrochemistry. The dynamic molecular reorientations endow (cyclohexanemethylaminium)2PbCl4 with a desired symmetry change of 4̅2mFmm2 at a Curie temperature of 411.8 K. More strikingly, the switchable evolution of ferroelastic domains was directly observed under the control of either electric or mechanical fields, which is the first experimental observation of a fully ferroelectric-fully ferroelastic effect in hybrid perovskites. This work would provide new insights into understanding the intrinsic cross-linking mechanism between ferroelectricity and ferroelasticity toward the development of multichannel interactive microelectronic devices.

2.
J Am Chem Soc ; 146(40): 27443-27450, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39141483

RESUMO

Ferroelectricity in metal-free perovskites (MFPs) has emerged as an academic hotspot for their lightweight, eco-friendly processability, flexibility, and degradability, with considerable progress including large spontaneous polarization, high Curie temperature, large piezoelectric response, and tailoring coercive field. However, their equivalent polarization axes as a key indicator are far from enough, although multiaxial ferroelectrics are highly preferred for performance output and application flexibility that profit from as many equivalent polarization directions as possible with easier reorientation. Here, by implementing the synergistic overlap of regulating anionic geometries (from spherical I- to octahedral [PF6]- and to tetrahedral [ClO4]- or [BF4]-) and cationic asymmetric modification, we successfully designed multiaxial MFP ferroelectrics CMDABCO-NH4-X3 (CMDABCO = N-chloromethyl-N'-diazabicyclo[2.2.2]octonium; X = [ClO4]- or [BF4]-) with the lowest P1 symmetry. More impressively, systemic characterizations indicate that they possess 24 equivalent polarization axes (Aizu notations of 432F1 and m3̅mF1, respectively)─the maximum number achievable for ferroelectrics. Benefiting from the multiaxial feature, CMDABCO-NH4-[ClO4]3 has been demonstrated to have excellent piezoelectric sensing performance in its polycrystalline sample and prepared composite device. Our study provides a feasible strategy for designing multiaxial MFP ferroelectrics and highlights their great promise for use in microelectromechanical, sensing, and body-compatible devices.

3.
Small ; 20(16): e2306989, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38032164

RESUMO

Hybrid organic-inorganic perovskite (HOIP) ferroelectric materials have great potential for developing self-powered electronic transducers owing to their impressive piezoelectric performance, structural tunability and low processing temperatures. Nevertheless, their inherent brittle and low elastic moduli limit their application in electromechanical conversion. Integration of HOIP ferroelectrics and soft polymers is a promising solution. In this work, a hybrid organic-inorganic rare-earth double perovskite ferroelectric, [RM3HQ]2RbPr(NO3)6 (RM3HQ = (R)-N-methyl-3-hydroxylquinuclidinium) is presented, which possesses multiaxial nature, ferroelasticity and satisfactory piezoelectric properties, including piezoelectric charge coefficient (d33) of 102.3 pC N-1 and piezoelectric voltage coefficient (g33) of 680 × 10-3 V m N-1. The piezoelectric generators (PEG) based on composite films of [RM3HQ]2RbPr(NO3)6@polyurethane (PU) can generate an open-circuit voltage (Voc) of 30 V and short-circuit current (Isc) of 18 µA, representing one of the state-of-the-art PEGs to date. This work has promoted the exploration of new HOIP ferroelectrics and their development of applications in electromechanical conversion devices.

4.
Angew Chem Int Ed Engl ; 63(2): e202313590, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37814153

RESUMO

The ability to generate and manipulate photoluminescence (PL) behavior has been of primary importance for applications in information security. Excavating novel optical effects to create more possibilities for information encoding has become a continuous challenge. Herein, we present an unprecedented PL temporary quenching that highly couples with thermodynamic phase transition in a hybrid crystal (DMML)2 MnBr4 (DMML=N,N-dimethylmorpholinium). Such unusual PL behavior originates from the anomalous variation of [MnBr4 ]2- tetrahedrons that leads to non-radiation recombination near the phase transition temperature of 340 K. Remarkably, the suitable detectable temperature, narrow response window, high sensitivity, and good cyclability of this PL temporary quenching will endow encryption applications with high concealment, operational flexibility, durability, and commercial popularization. Profited from these attributes, a fire-new optical encryption model is devised to demonstrate high confidential information security. This unprecedented optical effect would provide new insights and paradigms for the development of luminescent materials to enlighten future information encryption.

5.
Angew Chem Int Ed Engl ; 63(14): e202319650, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38275283

RESUMO

Luminescent ferroelectrics are holding exciting prospect for integrated photoelectronic devices due to potential light-polarization interactions at electron scale. Integrating ferroelectricity and long-lived afterglow emission in a single material would offer new possibilities for fundamental research and applications, however, related reports have been a blank to date. For the first time, we here achieved the combination of notable ferroelectricity and afterglow emission in an organic-inorganic hybrid material. Remarkably, the presented (4-methylpiperidium)CdCl3 also shows noticeable antiferroelectric behavior. The implementation of cationic customization and halogen engineering not only enables a dramatic enhancement of Curie temperature of 114.4 K but also brings a record longest emission lifetime up to 117.11 ms under ambient conditions, realizing a leapfrog improvement of at least two orders of magnitude compared to reported hybrid ferroelectrics so far. This finding would herald the emergence of novel application potential, such as multi-level density data storage or multifunctional sensors, towards the future integrated optoelectronic devices with multitasking capabilities.

6.
Angew Chem Int Ed Engl ; : e202413726, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39207278

RESUMO

Three-dimensional (3D) pseudohalide rare-earth double perovskites (PREDPs) have garnered significant attention for their versatile physical properties, including ferroelectricity, ferroelasticity, large piezoelectric responses, and circularly polarized luminescence. However, their potential for X-ray detection remains unexplored, and the low Curie temperature (TC) limits the performance window for PREDP ferroelectrics. Here, by applying the chemical regulation strategies involving halogen substitution on the organic cation and Rb/Cs substitution to the PREDP [(R)-M3HQ]2RbEu(NO3)6 [(R)-M3HQ=(R)-N-methyl-3-hydroxylquinuclidinium] with a low TC of 285 K, a novel 3D PREDP ferroelectric [(R)-CM3HQ]2CsEu(NO3)6 [(R)-CM3HQ=(R)-N-chloromethyl-3-hydroxylquinuclidinium] are successfully synthesized, for which the TC reaches 344 K. More importantly, such a strategy endowed [(R)-CM3HQ]2CsEu(NO3)6 with notable X-ray detection capabilities. Centimeter-sized [(R)-CM3HQ]2CsEu(NO3)6 single crystals fabricated from aqueous solutions demonstrated a sensitivity of 1307 µC Gyair -1 cm-2 and a low detectable dose rate of 152 nGyair s-1, the highest sensitivity reported for hybrid double perovskite ferroelectric detectors. This work positions PREDPs as promising candidates for the next generation of eco-friendly optoelectronic materials and also offers substantial insights into the interaction between structure, composition, and functionality in ferroelectric materials.

7.
Angew Chem Int Ed Engl ; 63(39): e202409796, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-38958031

RESUMO

Out-of-plane polarization is a highly desired property of two-dimensional (2D) ferroelectrics for application in vertical sandwich-type photoferroelectric devices, especially in ultrathin ferroelectronic devices. Nevertheless, despite great advances that have been made in recent years, out-of-plane polarization remains unrealized in the 2D hybrid double perovskite ferroelectric family. Here, from our previous work 2D hybrid double perovskite HQERN ((S3HQ)4EuRb(NO3)8, S3HQ=S-3-hydroxylquinuclidinium), we designed a molecular strategy of F-substitution on organic component to successfully obtain FQERN ((S3FQ)4EuRb(NO3)8, S3FQ=S-3-fluoroquinuclidinium) showing circularly polarized luminescence (CPL) response. Remarkably, compared to the monopolar axis ferroelectric HQERN, FQERN not only shows multiferroicity with the coexistence of multipolar axis ferroelectricity and ferroelasticity but also realizes out-of-plane ferroelectric polarization and a dramatic enhancement of Curie temperature of 94 K. This is mainly due to the introduction of F-substituted organic cations, which leads to a change in orientation and a reduction in crystal lattice void occupancy. Our study demonstrates that F-substitution is an efficient strategy to realize and optimize ferroelectric functional characteristics, giving more possibility of 2D ferroelectric materials for applications in micro-nano optoelectronic devices.

8.
Chemistry ; 28(69): e202202533, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36082618

RESUMO

Organic-inorganic Hybrid (OIH) materials for multifunctional switchable applications have attracted enormous attention in recent years due to their excellent optoelectronic properties and good structural tunability. However, it still remains challenging to fabricate one simple OIH compound with multi-functionals properties, such as dielectric switching, thermochromic properties, semiconductor characteristics and ferroelasticity. Under this context, we successfully synthesized [2-(2-fluorophenyl)ethan-1- ammonium]2 SnBr6 (compound 1), which has a higher phase transition temperature of 427.7 K. Additionally, it exhibits a semiconducting property with an indirect band gap of 2.36 eV. Combining ferroelastic, narrow band gap, thermochromic, and dielectric properties, compound 1 can be considered as a rarely reported multi-functional ferroelastic material, which is expected to give inspiration for broadening the applications in the smart devices field.


Assuntos
Semicondutores , Transição de Fase
9.
Dalton Trans ; 52(4): 1074-1081, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36602202

RESUMO

In order to meet the needs of social development, increasing research attention has been paid to multifunctional molecular-based phase-transition materials. The traditional phase-transition materials with a single functional property can be transformed into magnificent ones by adding additional functional properties-for instance photoluminescence and magnetic order- because having two or more functional properties simultaneously greatly broadens the fields of their applications. At present, there are very few multifunctional phase-transition materials showing excellent performance, and the crystal structure design and performance optimization of materials still need to be studied in depth. Herein, we report the development of two organic-inorganic hybrid materials: (MBA)2ZnI4 (1, MBA = 4-methoxybenzylammonium) with switchable dielectricity and a high phase-transition temperature (Tc = 359.55 K), and (MBA)2ZnBr4 (2) with green luminescence (λexc = 314 nm) and nonlinear optical properties (0.75× KDP). A two-dimensional (2D) fingerprint analysis of the Hirshfeld surface plots revealed a significant difference between the hydrogen-bonding interaction before the phase transition and that afterwards. The two compounds were further verified, from energy band structure calculations, to be direct-band-gap semiconductors. In conclusion, this work has provided a viable strategy, involving the application of chemical modifications, for designing various functional materials.


Assuntos
Compostos de Cálcio , Halogênios , Fluorescência , Transição de Fase
10.
Dalton Trans ; 52(30): 10415-10422, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37436427

RESUMO

The multifunctional tuning of solid-state dielectric switches constructed from organic-inorganic hybrid materials (OIHMs) has received great attention. In particular, molecular ferroelastics with dielectric phase transitions have considerable potential in the optical and electrical fields owing to their adjustable structures and physical features. However, it remains a challenge to effectively design ferroelastics with high phase transition temperature (Tc). We used [TTMA]2CdI4 (TTMA = tetramethylammonium, 1) as a template to continuously increase the molecular weight and change the structure of the hybrid material by modifying and extending the alkane chain in the cation. Therefore, a series of OIHMs were eventually developed: [TMEA]2CdI4 (TMEA = trimethylethylammonium, 2), [TMPA]2CdI4 (TMPA = trimethylpropylammonium, 3), and [TMIPA]2CdI4 (TMIPA = trimethyliso-propylammonium, 4). Among them, the Tc of ferroelastic 3 increased up to 387 K. DSC and temperature-related dielectric constant tests prove the occurrence of the phase transition for 1, 2, and 3. The structures further indicate that the phase transition is caused by the order-disorder cation motion. The extension of the alkyl chain greatly increases Tc and endows 3 with ferroelasticity at room temperature.

11.
Chem Sci ; 14(34): 9041-9047, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37655024

RESUMO

As an innovative form of stimulus-response materials, organic-inorganic hybrid phase transition materials have become a wonderful contender in the field of functional electronic equipment due to their versatile structure, intensive functions and straightforward preparation. However, the targeted regulation and optimization of the electrical/optical response, along with the establishment of regular structure-performance relationships, pose significant challenges in meeting the diverse demands of practical applications over an extended period. Herein, we conducted a systematic investigation into the role of lattice void occupancy in regulating phase transition temperature (Tp) and related optical/electrical bistability. By taking hybrid material [TMEA][Cd(SCN)3] featuring a flexible ammonium cation [TMEA]+ (TMEA = ethyltrimethylammonium) as the prototype, we successfully synthesized three phase transition materials, namely [DEDMA][Cd(SCN)3], [TEMA][Cd(SCN)3] and [TEA][Cd(SCN)3] (DEDMA = diethyldimethylammonium, TEMA = triethylmethylammonium, and TEA = tetraethylammonium), and the excellent regulation of the physical properties of these compounds was achieved through subtle engineering of void occupancy. More strikingly, [TEA][Cd(SCN)3] exhibits remarkable bistable properties in terms of dielectric and nonlinear optical responses (with second-harmonic generation intensity reaching 2.5 times that of KDP). This work provides a feasible avenue to reasonably customise organic-inorganic hybrid phase transition materials and finely adjust their intriguing functionalities.

12.
Indian J Orthop ; 57(9): 1452-1460, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37609008

RESUMO

Background: Regarding trochanteric hip fractures, one type of posterior coronal fragments was described as the "banana-shaped fragment", while the impact of the banana-shaped fragment on mechanical stability has not been further studied. The current study investigated the association between the banana-shaped fragment and mechanical complications after surgery. Methods: This retrospective cohort study included 273 patients treated by proximal femoral nail antirotation (PFNA) in the full analysis. The age, the sex, the fracture side, the follow-up time, the American Society of Anesthesiologists classification, the operators, the fracture classification, the tip-apex distance, the blade positions, the reduction quality and the bone mineral density were analyzed in relation to mechanical complications, through univariate and multivariate approaches. Results: Mechanical complications happened in 33 patients. The banana-shaped fragment (adjusted odds ratio 5.240, 95% CI 2.172 to 12.641; p < 0.001), the tip-apex distance and the reduction quality showed significant association with mechanical complications in both univariate and multivariate analysis. Moreover, for 118 patients with the banana-shaped fragment, we found that the use of wire cerclage couldn't significantly lower the rates of mechanical complications (p = 0.648). Conclusions: The banana-shaped fragment had a negative impact on mechanical stability of trochanteric hip fractures treated by PFNA. In the perioperative period, the BSF should be carefully evaluated, and its specific handling deserves further study.

13.
Dalton Trans ; 52(44): 16406-16412, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37870776

RESUMO

Organic-inorganic hybrid perovskites (OIHPs) with dielectric switching functions have aroused comprehensive scientific interest, benefitting from their promising applications in sensors and information storage. However, to date, most of these materials discovered thus far possess a single function and are limited in their applicability, failing to meet the requirements of diverse applications. Moreover, the discovery of these materials has been largely serendipitous. Building multifunctional OIHPs with dielectric switching and semiconductors remains a daunting task. In this context, by introducing [C7H16N]+ as cations and in combination with lead halide with semiconducting properties, two OIHPs [C7H16N]PbI3 (1) and [C7H16N]PbBr3 (2) ([C7H16N]+ = (cyclopropylmethyl) trimethylammonium) have been successfully designed. They have dielectric switching properties close to 253 and 279 K and semiconducting behavior with band gaps of 2.67 and 3.22 eV. The phase transition temperature increased by 26 K through halogen substitution. In summary, our findings in this study provide insights into the application of the halogen substitution regulation strategy and open up new possibilities for designing perovskite semiconductors with dielectric switching functionality.

14.
Acta Biomater ; 155: 436-448, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36435440

RESUMO

Spinal cord injury (SCI), a debilitating medical condition that can cause irreversible loss of neurons and permanent paralysis, currently has no cure. However, regenerative medicine may offer a promising treatment. Given that numerous regenerative strategies aim to deliver cells and materials in the form of tissue-engineered therapies, understanding and characterising the mechanical properties of the spinal cord tissue is very important. In this study, we have systematically characterised the spatiotemporal changes in elastic stiffness (elastic modulus, Pa) and viscosity (drop in peak force, %) of injured rat thoracic spinal cord tissues at distinct time points after crush injury using the indentation technique. Our results demonstrate that in comparison with uninjured spinal cord tissue, the injured tissues exhibited lower stiffness (median 3281 Pa versus 9632 Pa; P < 0.001) but demonstrated elevated viscosity (median 80% versus 57%; P < 0.001) at 3 days postinjury. Between 4 and 6 weeks after SCI, the overall viscoelastic properties of injured tissues returned to baseline values. At 12 weeks after SCI, in comparison with uninjured tissue, the injured spinal cord tissues displayed a significant increase in both elasticity (median 13698 Pa versus 9920 Pa; P < 0.001) and viscosity (median 64% versus 58%; P < 0.001). This work constitutes the first quantitative mapping of spatiotemporal changes in spinal cord tissue elasticity and viscosity in injured rats, providing a mechanical basis of the tissue for future studies on the development of biomaterials for SCI repair. STATEMENT OF SIGNIFICANCE: Spinal cord injury (SCI) is a devastating disease often leading to permanent paralysis. While enormous progress in understanding the molecular pathomechanisms of SCI has been made, the mechanical properties of injured spinal cord tissue have received considerably less attention. This study provides systematic characterization of the biomechanical evolution of rat spinal cord tissue after SCI using a microindentation test method. We find spinal cord tissue behaves significantly softer but more viscous immediately postinjury. As time passes, the lesion site gradually returns to baseline values and then displays pronounced increased viscoelastic properties. As host tissue mechanical properties are a crucial consideration for any biomaterial implanted into central nervous system, our results may have important implications for further studies of SCI repair.


Assuntos
Traumatismos da Medula Espinal , Ratos , Animais , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/patologia , Medula Espinal/patologia , Elasticidade , Fenômenos Mecânicos , Paralisia/patologia
15.
Chem Sci ; 14(7): 1781-1786, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36819861

RESUMO

Organic-inorganic halide perovskites (OIHPs) are very eye-catching due to their chemical tunability and rich physical properties such as ferroelectricity, magnetism, photovoltaic properties and photoluminescence. However, no nickel-based OIHP ferroelectrics have been reported so far. Here, we designed an ABX3 OIHP ferroelectric (3-pyrrolinium)NiCl3, where the 3-pyrrolinium cations are located on the voids surrounded by one-dimensional chains composed of NiCl6-face-sharing octahedra via hydrogen bonding interactions. Such a unique structure enables the (3-pyrrolinium)NiCl3 with a high spontaneous polarization (P s) of 5.8 µC cm-2 and a high Curie temperature (T c) of 428 K, realizing dramatic enhancement of 112 and 52 K compared to its isostructural (3-pyrrolinium)MCl3 (M = Cd, Mn). To our knowledge, remarkably, (3-pyrrolinium)NiCl3 should be the first case of nickel(ii)-based OIHP ferroelectric to date, and its T c of 428 K (35 K above that of BaTiO3) is the highest among all reported one-dimensional OIHP ferroelectrics. This work offers a new structural building block for enriching the family of OIHP structures and will inspire the further exploration of new nickel(ii)-based OIHP ferroelectrics.

16.
Dalton Trans ; 51(5): 2005-2011, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35029614

RESUMO

Multifunctional switching materials show great potential for applications in sensors, smart switches, and other fields due to their ability to integrate different physical channels in one single device. However, multifunctional responsive materials with multiple switching and luminescence properties have rarely been reported. Here, we report three organic-inorganic hybrids: [TMAA]2[CoCl4] (compound 1), [TMAA]2[CdBr4] (compound 2) and [TMAA]2[MnCl4] (compound 3). Compound 1 and compound 2 undergo two reversible phase transitions at high temperature (328.95/359.25 K and 350.45/393.15 K, respectively). Since the inorganic skeleton has a strong influence on the luminescence properties of such structured substances, Cd and Co were replaced with Mn, after which compound 3 was obtained as expected. The above strategy triggered bright green luminescence with a quantum yield of 35.19%, and significantly increased the phase transition temperature of compound 3 to above 400 K. The above results show that the regulation of the inorganic skeleton provides a new strategy for researchers to develop dual phase change/luminous materials.

17.
Front Surg ; 9: 855851, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402493

RESUMO

Purpose: To systematically evaluate the benefits of reducing and fixing displaced lesser trochanter (LT) of trochanteric fractures and when this procedure is worth the effect. Methods: From database establishment through March 2021, four online databases (PubMed, Cochrane, Embase, and Web of Science) were searched for relevant literature that investigated reduction and fixation for displaced LT of trochanteric fractures. The papers were then screened by two reviewers independently and in duplicate according to prior inclusion and exclusion criteria. Demographic data as well as data on fracture types, surgical protocols, and surgical outcomes were recorded, analyzed, and interpreted. Results: Total 10 clinical studies with 928 patients were included, in which 48 cases had intact LT and 880 cases involved the displaced LT, of which 196 (22.27%) cases underwent reduction and fixation for LT while the rest of 684 (77.73%) cases not. In these studies, complications were evaluated as a more applicable predictive parameter for operation than postoperative hip function. Conclusion: It was beneficial to reduce and fix the displaced LT when one of the conditions below occurred: displacement distance of LT ≥2 cm, quantity of comminuted LT fragments ≥2, and range of LT fragments in medial wall ≥75%; the fracture line of LT fragments reaching or exceeding the midline of the posterior wall.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA