Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 61(44): 17883-17892, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36302095

RESUMO

The strategy to enhance phosphor stability against thermal quenching and moisture conditions will contribute to controlling the feature of phosphor-converted white-light-emitting diodes (pc-WLEDs). Herein, an effective strategy is achieved with the incorporation of Sm3+ ions, and a robust reddish-orange emission (no thermal quenching up to 498 K) is obtained based on Ba3LaNb3O12 as a host. In light of excitation by near-ultraviolet irradiation at 408 nm, Ba3LaNb3O12:Sm3+ gives rise to a typical signal ascribed to the 4G5/2 → 6HJ/2 (J = 5, 7, 9, and 11) transitions of Sm3+ ions. The concentration quenching effect is observed when the Sm3+ content exceeds 10%, and the quenching mechanism is caused by electronic dipole-dipole interactions. Based on the narrow emission curves, a very high color purity (92.4%) could be recorded. The Sm3+ substitution at the Ba2+/La3+ site leads to a rigid structural lattice and abundant electron-trapping centers for the Sm3+ ions, which will be responsible for the zero-thermal-quenching phenomenon. In addition, oleic acid (OA) is selected to form a hydrophobic covering surface structure to protect Ba3LaNb3O12:Sm3+, which can assist in improving the moisture resistance. The most favorable parameters concerning the warm-light emission (a high general color rendering index, Ra, of 85.7 and a low correlated color temperature, CCT, of 4965 K) can be achieved in pc-WLEDs containing an OA-modified sample. Moreover, its luminous efficiency, LE, can maintain 82.9% of its initial value after 120 h under controlled environmental conditions of 85 °C and 85% humidity. These results pave a new way to optimize the sample as a potential candidate for red-emitting materials.

2.
Inorg Chem ; 60(21): 16507-16517, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34647450

RESUMO

Single-phase phosphors with tunable emission colors are crucial to develop high-performance white light-emitting diodes since they are valuable to improve the energy efficiency, color rendering index, and correlated color temperature. Most of the studies have been conducted to control the spectral shifts via a polyhedral distortion or chemical unit cosubstitution strategy. The combination of host optimization and dopant activator design in a single-phase phosphor system is very rare. Herein, a partial substitution strategy of [Ba2+-Gd3+] by [Sr2+-Lu3+] has been employed in Ba4-xSrxGd3-x-yLuxNa3(PO4)6F2/5% Eu2+ (x = 0-0.40) phosphors. Also, the energy migration from Eu2+ to Tb3+ ions has been investigated in as-prepared samples. Consequently, the emitted signal is observed to shift from 470 to 575 nm derived from equivalent substitutions, which is attributed to specific performance by the emission profile of Eu2+, and such results are closely related to splitting of the crystal field and energy transfer among various luminescent centers. Moreover, the tunable yellowish-green emitting material has been assembled by incorporating ion pairs (Eu2+ → Tb3+) into the Ba3.85Sr0.15Gd2.85Lu0.15Na3(PO4)6F2, and their relative ratios are varied. The corresponding Eu2+ → Tb3+ energy migration process is assigned to be the dipole-quadrupole interaction by the Inokuti-Hirayama model. This work provides rational guidance for the design and discovery of new products with tunable emission colors, originating from the cosubstitution strategy and energy conversion model.

3.
Inorg Chem ; 60(24): 19315-19327, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34851618

RESUMO

The influence of temperature on a variety of physiological or chemical processes has generated considerable interest, and recently noninvasive lanthanide-incorporated optical thermometers have been considered as promising candidates for monitoring its changes at different scales. Herein, a novel Bi3+-activated Sr3-xGdxGaO4+xF1-x phosphor with tunable color has been constructed by a cooperative cation-anion substitution strategy with to the replacement of [Sr2+-F-] by [Gd3+-O2-]. When x = 0, the sample Sr3GaO4F/Bi3+ possesses a peak wavelength at 438 nm, and this value will shift to 470 nm if x is equal to 1 (Sr2GdGaO5/Bi3+). In addition, photoluminescence tuning from blue to red has been realized successfully by an efficient Bi3+ → Eu3+ energy migration model in Sr2.6Gd0.4GaO4.4F0.6 samples. The specific Bi3+ → Eu3+ energy transfer has been explained by dipole-dipole interactions derived from a model of the Dexter pathway. Intriguingly, the two dopants (a blue signal from Bi3+ and a red signal from Eu3+) possess different thermal responses to increasing temperature. Accordingly, the intensity ratio values are sensitive to the temperature changes. The energy level cross relaxation causes the quenching effect of Bi3+, and the multi-phonon de-excitation mode leads to the thermal quenching of Eu3+. At room temperature (298 K), the determined maximum relative sensitivity (Sr) is 1.27% K-1. Moreover, the absolute sensitivity (Sa) is 0.067 K-1 since the temperature is elevated to 523 K. The collected results are superior to most of the reported optical thermometry materials.

4.
Inorg Chem ; 59(20): 15514-15525, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33030016

RESUMO

The most critical aspect in the assembly of phosphor-converted white light-emitting diodes (pc-WLEDs) is how to stabilize the device in a practical environment. The high applied currents can generate enormous heat up to more than 100 °C, and such a continuous illumination process will lead to serious effects concerning the stability of the device. Therefore, the new search for examples to fully suppress thermal quenching effect is a real challenge. In this study, a novel Eu3+-activated CaMgGeO4 (CMGO) phosphor of olivine type is developed via a conventional solid-state reaction. The results reveal that Eu3+ occupies the low symmetric Ca2+ site of this host. Upon visible-light sensitization at 464 nm, a dominant red emission band with maximum at 612 nm is witnessed. Its full width at half-maximum (fwhm) is merely ∼4.37 nm, and a high color purity of around 94% is achieved. Their corresponding Commission Internationale de L'Eclairage (CIE) coordinates are very close to standard red color coordinates (0.666, 0.333). The influence of concentration and temperature on the optical property has been explored. It has been discovered that the optimized sample (CMGO:0.01Eu3+) is not influenced by the thermal quenching effect and its fluorescent intensity is improved even up to 473 K, which is mainly attributed to the incorporation of abundant trap sites generated by the nonequivalent substitution Eu3+ for Ca2+. After it is integrated into commercially available YAG:Ce3+ phosphor-based pc-WLEDs, the excellent optical parameters of the fabricated WLEDs are evaluated. The correlated color temperature (CCT) varies from cool white (6458 K) to warm (4370 K), and the color rendering index (CRI) increases from 78 to 86 under a high flux operating current of 200 mA. Furthermore, the chromaticity coordinates remain almost stable with the increasing drive current from 200 mA to 1000 mA. It is highly expected that CaMgGeO4:0.01Eu3+ will become a suitable red phosphor for the preparation of white LEDs with high efficiency.

5.
ACS Appl Mater Interfaces ; 15(16): 20252-20265, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37058140

RESUMO

A narrow-band red-light component is critical to establish high color rendition and a wide color gamut of phosphor-converted white-light-emitting diodes (pc-WLEDs). In this sense, Mn4+-doped K2SiF6 fluoride is the most successful material that has been commercialized. As with K2SiF6:Mn4+ phosphors, Mn4+-doped tantalum heptafluoride (K2TaF7:Mn4+) fulfills a similar luminescence behavior and has been brought in a promising narrow-band red phosphor. But the limited brightness and low moisture-resistant performances have inevitably blocked its practical application. Herein, we employed the density functional theory (DFT)-based ab initio estimation approach to quickly identify the proper sensitizer by systematically investigating the electronic-band coupling between the several possible sensitizers (Rb, Hf, Zr, Sn, Nb, and Mo) and the luminescent center (Mn). Combined with experimental results, Mo was demonstrated to be the optimal sensitizer, which resulted in a 60% enhancement of the emission. On the side, the moisture sensitivity has been effectively improved via grafting the hydrophobic octadecyltrimethoxysilane (ODTMS) layer on the phosphor surface. Through employing the K2TaF7:Mn4+,Mo6+@ODTMS composite as a red component, warm WLEDs with good performance were achieved with a correlated color temperature (CCT) of 4352 K, a luminous efficacy (LE) of 90.1 lm/W, and a color rendering index (Ra) of 83.4. In addition, a wide color gamut reaching up to 102.8% of the NTSC 1953 value could be realized. Aging tests at 85 °C and 85% humidity for 120 h on this device manifested that the ODTMS-modified phosphor had much better moisture stability than that of the unmodified one. These studies provided viable tools for optimizing Mn4+ luminescence in fluoride hosts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA