Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38652096

RESUMO

A Gram-negative, motile, rod-shaped bacterial strain, CA-0114T, was isolated from the midgut of a western honey bee, Apis mellifera. The isolate exhibited ≤96.43 % 16S rRNA gene sequence identity (1540 bp) to members of the families Enterobacteriaceae and Erwiniaceae. Phylogenetic trees based on genome blast distance phylogeny and concatenated protein sequences encoded by conserved genes atpD, fusA, gyrB, infB, leuS, pyrG and rpoB separated the isolate from other genera forming a distinct lineage in the Enterobacteriaceae. In both trees, the closest relatives were Tenebrionicola larvae YMB-R21T and Tenebrionibacter intestinalis BIT-L3T, which were isolated previously from Tenebrio molitor L., a plastic-eating mealworm. Digital DNA-DNA hybridization, orthologous average nucleotide identity and average amino acid identity values between strain CA-0114T and the closest related members within the Enterobacteriaceae were ≤23.1, 75.45 and 76.04 %, respectively. The complete genome of strain CA-0114T was 4 451669 bp with a G+C content of 52.12 mol%. Notably, the apparent inability of strain CA-0114T to ferment d-glucose, inositol and l-rhamnose in the API 20E system is unique among closely related members of the Enterobacteriaceae. Based on the results obtained through genotypic and phenotypic analysis, we propose that strain CA-0114T represents a novel species and genus within the family Enterobacteriaceae, for which we propose the name Apirhabdus apintestini gen. nov., sp. nov. (type strain CA-0114T=ATCC TSD-396T=DSM 116385T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Enterobacteriaceae , Ácidos Graxos , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Animais , Abelhas/microbiologia , RNA Ribossômico 16S/genética , Enterobacteriaceae/classificação , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/genética , DNA Bacteriano/genética , Ácidos Graxos/análise , Genoma Bacteriano
2.
Plant Dis ; 106(2): 432-438, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34455807

RESUMO

Management of Monilinia laxa, the causal agent of brown rot blossom blight in almond (Prunus dulcis), relies heavily on the use of chemical fungicides during bloom. However, chemical fungicides can have nontarget effects on beneficial arthropods, including pollinators, and select for resistance in the pathogen of concern. Almond yield is heavily reliant on successful pollination by healthy honey bees (Apis mellifera); thus, identifying sustainable, effective, and pollinator-friendly control methods for blossom blight during bloom is desirable. Flower-inhabiting microbes could provide a natural, sustainable form of biocontrol for M. laxa, while potentially minimizing costly nontarget effects on almond pollinators and the services they provide. As pollinators are sensitive to floral microbes and their associated taste and scent cues, assessing effects of prospective biocontrol species on pollinator attraction is also necessary. Here, our objective was to isolate and identify potential biocontrol microbes from an array of agricultural and natural flowering hosts and test their efficacy in suppressing M. laxa growth in culture. Out of an initial 287 bacterial and fungal isolates identified, 56 were screened using a dual culture plate assay. Most strains reduced M. laxa growth in vitro. Ten particularly effective candidate microbes were further screened for their effect on honey bee feeding. Of the 10, nine were found to both strongly suppress M. laxa growth in culture and not reduce honey bee feeding. These promising results suggest a number of strong candidates for augmentative microbial biocontrol of brown rot blossom blight in almond with potentially minimal effects on honey bee pollination.


Assuntos
Antibiose , Ascomicetos , Abelhas , Flores/microbiologia , Prunus dulcis , Animais , Polinização , Estudos Prospectivos , Prunus dulcis/microbiologia
3.
BMC Genomics ; 18(1): 207, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28249569

RESUMO

BACKGROUND: Organisms typically face infection by diverse pathogens, and hosts are thought to have developed specific responses to each type of pathogen they encounter. The advent of transcriptomics now makes it possible to test this hypothesis and compare host gene expression responses to multiple pathogens at a genome-wide scale. Here, we performed a meta-analysis of multiple published and new transcriptomes using a newly developed bioinformatics approach that filters genes based on their expression profile across datasets. Thereby, we identified common and unique molecular responses of a model host species, the honey bee (Apis mellifera), to its major pathogens and parasites: the Microsporidia Nosema apis and Nosema ceranae, RNA viruses, and the ectoparasitic mite Varroa destructor, which transmits viruses. RESULTS: We identified a common suite of genes and conserved molecular pathways that respond to all investigated pathogens, a result that suggests a commonality in response mechanisms to diverse pathogens. We found that genes differentially expressed after infection exhibit a higher evolutionary rate than non-differentially expressed genes. Using our new bioinformatics approach, we unveiled additional pathogen-specific responses of honey bees; we found that apoptosis appeared to be an important response following microsporidian infection, while genes from the immune signalling pathways, Toll and Imd, were differentially expressed after Varroa/virus infection. Finally, we applied our bioinformatics approach and generated a gene co-expression network to identify highly connected (hub) genes that may represent important mediators and regulators of anti-pathogen responses. CONCLUSIONS: Our meta-analysis generated a comprehensive overview of the host metabolic and other biological processes that mediate interactions between insects and their pathogens. We identified key host genes and pathways that respond to phylogenetically diverse pathogens, representing an important source for future functional studies as well as offering new routes to identify or generate pathogen resilient honey bee stocks. The statistical and bioinformatics approaches that were developed for this study are broadly applicable to synthesize information across transcriptomic datasets. These approaches will likely have utility in addressing a variety of biological questions.


Assuntos
Abelhas/genética , Interações Hospedeiro-Patógeno/genética , Animais , Abelhas/microbiologia , Abelhas/parasitologia , Abelhas/virologia , Bases de Dados Genéticas , Evolução Molecular , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Imunidade Inata/genética , Anotação de Sequência Molecular , Nosema/fisiologia , Vírus de RNA/fisiologia , Varroidae/fisiologia
4.
PLoS Pathog ; 11(3): e1004713, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25811620

RESUMO

Populations of honey bees are declining throughout the world, with US beekeepers losing 30% of their colonies each winter. Though multiple factors are driving these colony losses, it is increasingly clear that viruses play a major role. However, information about the molecular mechanisms mediating antiviral immunity in honey bees is surprisingly limited. Here, we examined the transcriptional and epigenetic (DNA methylation) responses to viral infection in honey bee workers. One-day old worker honey bees were fed solutions containing Israeli Acute Paralysis Virus (IAPV), a virus which causes muscle paralysis and death and has previously been associated with colony loss. Uninfected control and infected, symptomatic bees were collected within 20-24 hours after infection. Worker fat bodies, the primary tissue involved in metabolism, detoxification and immune responses, were collected for analysis. We performed transcriptome- and bisulfite-sequencing of the worker fat bodies to identify genome-wide gene expression and DNA methylation patterns associated with viral infection. There were 753 differentially expressed genes (FDR<0.05) in infected versus control bees, including several genes involved in epigenetic and antiviral pathways. DNA methylation status of 156 genes (FDR<0.1) changed significantly as a result of the infection, including those involved in antiviral responses in humans. There was no significant overlap between the significantly differentially expressed and significantly differentially methylated genes, and indeed, the genomic characteristics of these sets of genes were quite distinct. Our results indicate that honey bees have two distinct molecular pathways, mediated by transcription and methylation, that modulate protein levels and/or function in response to viral infections.


Assuntos
Abelhas/metabolismo , Epigênese Genética , Proteínas de Insetos/biossíntese , Infecções por Picornaviridae/metabolismo , Picornaviridae/metabolismo , Transcriptoma , Animais , Abelhas/genética , Abelhas/virologia , Perfilação da Expressão Gênica , Proteínas de Insetos/genética , Picornaviridae/genética , Infecções por Picornaviridae/genética
5.
BMC Genomics ; 16: 518, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26159619

RESUMO

BACKGROUND: With the development of inexpensive, high-throughput sequencing technologies, it has become feasible to examine questions related to population genetics and molecular evolution of non-model species in their ecological contexts on a genome-wide scale. Here, we employed a newly developed suite of integrated, web-based programs to examine population dynamics and signatures of selection across the genome using several well-established tests, including F ST, pN/pS, and McDonald-Kreitman. We applied these techniques to study populations of honey bees (Apis mellifera) in East Africa. In Kenya, there are several described A. mellifera subspecies, which are thought to be localized to distinct ecological regions. RESULTS: We performed whole genome sequencing of 11 worker honey bees from apiaries distributed throughout Kenya and identified 3.6 million putative single-nucleotide polymorphisms. The dense coverage allowed us to apply several computational procedures to study population structure and the evolutionary relationships among the populations, and to detect signs of adaptive evolution across the genome. While there is considerable gene flow among the sampled populations, there are clear distinctions between populations from the northern desert region and those from the temperate, savannah region. We identified several genes showing population genetic patterns consistent with positive selection within African bee populations, and between these populations and European A. mellifera or Asian Apis florea. CONCLUSIONS: These results lay the groundwork for future studies of adaptive ecological evolution in honey bees, and demonstrate the use of new, freely available web-based tools and workflows ( http://usegalaxy.org/r/kenyanbee ) that can be applied to any model system with genomic information.


Assuntos
Abelhas/genética , Genoma de Inseto/genética , Seleção Genética/genética , Transcriptoma/genética , Animais , Evolução Molecular , Genética Populacional/métodos , Genômica/métodos , Quênia , Modelos Genéticos , Polimorfismo de Nucleotídeo Único/genética , Dinâmica Populacional
6.
Insects ; 14(8)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37623399

RESUMO

Climate change-related extreme weather events have manifested in the western United States as warmer and drier conditions with an increased risk of wildfires. Honeybees, essential for crop pollination in California, are at the center of these extreme weather events. We associated the maximum daily temperature and air quality index values with the performance of colonies placed in wildfire-prone areas and determined the impact of these abiotic stressors on gene expression and histopathology. Our results indicate that poor air quality was associated with higher maximum daily temperatures and a lower gene expression level of Prophenoloxidase (ProPO), which is tied to immune system strength; however, a higher gene expression level of Vitellogenin (Vg) is tied to oxidative stress. There was a positive relationship between Varroa mites and N. ceranae pathogen loads, and a negative correlation between Varroa mites and Heat Shock Protein 70 (HSP70) gene expression, suggesting the limited ability of mite-infested colonies to buffer against extreme temperatures. Histological analyses did not reveal overt signs of interaction between pathology and abiotic stressors, but N. ceranae infections were evident. Our study provides insights into interactions between abiotic stressors, their relation to common biotic stressors, and the expression of genes related to immunity and oxidative stress in bees.

7.
J Vet Diagn Invest ; 35(6): 630-638, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37587755

RESUMO

The Western honey bee (Apis mellifera) is economically important as the primary managed pollinator of many agricultural crops and for the production of various hive-related commodities. Honey bees are not classically or thoroughly covered in veterinary pathology training programs. Given their unique anatomic and biological differences from the other species more traditionally evaluated by veterinary pathologists, establishing routine and consistent methods for processing samples for histology ensures accurate diagnostic and research conclusions. We developed and tested several field protocols for the sampling of honey bees. We compared the tissue-quality outcomes for worker bees fixed, collected, and/or softened under the following protocols: 1) routine formalin fixation; 2) softening chitin via exposure to Nair for 2 d or 3) 5 d; 4) shortened times between formalin submersion and trimming of body segments to enhance penetration of formalin into internal tissues; 5) ethanol submersion of specimen prior to formalin fixation; 6) indirect dry ice exposure; and 7) prolonged -80°C storage. Routine formalin fixation, exposure to Nair for 2 d, indirect dry ice exposure, and trimming body segments within 2 h of formalin submersion resulted in the highest quality histologic tissue sections. The poorest quality sections resulted from softening of chitin by exposure to Nair for 5 d, submersion in ethanol for 3 d before formalin fixation, and prolonged storage at -80°C. Our results indicate that routine formalin fixation is adequate, and that immobilizing bees with indirect dry ice exposure aids in sample collection without negatively impacting the quality of histologic sections.


Assuntos
Gelo-Seco , Formaldeído , Abelhas , Animais , Quitina , Etanol
8.
ISME J ; 17(9): 1382-1395, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37311937

RESUMO

Managed honey bee (Apis mellifera) populations play a crucial role in supporting pollination of food crops but are facing unsustainable colony losses, largely due to rampant disease spread within agricultural environments. While mounting evidence suggests that select lactobacilli strains (some being natural symbionts of honey bees) can protect against multiple infections, there has been limited validation at the field-level and few methods exist for applying viable microorganisms to the hive. Here, we compare how two different delivery systems-standard pollen patty infusion and a novel spray-based formulation-affect supplementation of a three-strain lactobacilli consortium (LX3). Hives in a pathogen-dense region of California are supplemented for 4 weeks and then monitored over a 20-week period for health outcomes. Results show both delivery methods facilitate viable uptake of LX3 in adult bees, although the strains do not colonize long-term. Despite this, LX3 treatments induce transcriptional immune responses leading to sustained decreases in many opportunistic bacterial and fungal pathogens, as well as selective enrichment of core symbionts including Bombilactobacillus, Bifidobacterium, Lactobacillus, and Bartonella spp. These changes are ultimately associated with greater brood production and colony growth relative to vehicle controls, and with no apparent trade-offs in ectoparasitic Varroa mite burdens. Furthermore, spray-LX3 exerts potent activities against Ascosphaera apis (a deadly brood pathogen) likely stemming from in-hive dispersal differences, whereas patty-LX3 promotes synergistic brood development via unique nutritional benefits. These findings provide a foundational basis for spray-based probiotic application in apiculture and collectively highlight the importance of considering delivery method in disease management strategies.


Assuntos
Probióticos , Varroidae , Abelhas , Animais , Suplementos Nutricionais , Bactérias/genética , Lactobacillus , Criação de Abelhas
10.
Heliyon ; 8(9): e10452, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36097486

RESUMO

Honey bees are the most efficient pollinators of several important fruits, nuts and vegetables and are indispensable for the profitable production of these crops. Health and performance of honey bee colonies have been declining for decades due to a combination of factors including poor nutrition, agrochemicals, pests and diseases. Bees depend on a diversity of plants for nutrition as pollen is the predominant protein and lipid source, and nectar, the source of carbohydrates for larval development. Additionally, pollen and nectar also contain small amounts of plant secondary metabolites or phytochemicals that are primarily plant defense compounds. Bees have coevolved to benefit from these compounds as seen by the improved longevity, pathogen tolerance and gut microbiome abundance in worker bees whose diets were supplemented with select phytochemicals. Here we investigate the impact of four phytochemicals, known to benefit bees, - caffeine, kaempferol, gallic acid and p-coumaric acid, on hypopharyngeal gland (HPG) size of nurse bees. Newly emerged bees were provided with 25 ppm of each of the four phytochemicals in 20% (w/v) sucrose solution and the size of HPGs were measured after a 10 d period. Bees that received p-coumaric acid or kaempferol showed a significant increase in HPG size. A significant decrease in HPG size was seen in bees receiving caffeine or gallic acid. The implication of our findings on worker bee ontogeny, transitioning from nurses to foragers and relevance to foraging related competencies are discussed. It is critical that bees have access to phytochemicals to ensure colony health and performance. Such access could be through natural habitats that provide a diversity of pollen and nectar sources or through dietary supplements for bee colonies.

11.
Sci Rep ; 10(1): 11990, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32686702

RESUMO

Honey bee queens undergo dramatic behavioral (e.g., reduced sexual receptivity), physiological (e.g., ovary activation, ovulation, and modulation of pheromone production) and transcriptional changes after they complete mating. To elucidate how queen post-mating changes are influenced by seminal fluid, the non-spermatozoa-containing component of semen, we injected queens with semen or seminal fluid alone. We assessed queen sexual receptivity (as measured by likelihood to take mating flights), ovary activation, worker retinue response (which is influenced by queen pheromone production), and transcriptional changes in queen abdominal fat body and brain tissues. Injection with either seminal fluid or semen resulted in decreased sexual receptivity, increased attractiveness of queens to workers, and altered expression of several genes that are also regulated by natural mating in queens. The post-mating and transcriptional changes of queens receiving seminal fluid were not significantly different from queens injected with semen, suggesting that components in seminal fluid, such as seminal fluid proteins, are largely responsible for stimulating post-mating changes in queens.


Assuntos
Abelhas/fisiologia , Sêmen/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Abelhas/genética , Encéfalo/metabolismo , Corpo Adiposo/metabolismo , Feminino , Voo Animal/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Masculino , Ovário/fisiologia , Transcriptoma/genética
12.
Insects ; 11(2)2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-32013229

RESUMO

The 2019 American Bee Research Conference (ABRC) was held January 10-12, 2019 in conjunction with the annual convention of the American Honey Producers Association in Tempe, AZ. Over the three-day conference, a total of 45 oral presentations and 13 poster presentations were given, representing work done from over 27 institutions and 34 different research groups from throughout the United States and Canada. This proceedings contains and overview of the conference and the submitted abstracts for presentations given at the 2018 American Bee Research Conference.

13.
Environ Entomol ; 38(2): 493-8, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19389300

RESUMO

A bioassay was conducted to determine the impact of methoprene, an insect growth regulator (IGR), on fecundity, larval survival, and size of progeny for Onthophagus taurus Schreber. Adult O. taurus dung beetles were offered methoprene-treated manure in three to five replications each at concentrations of 0.08, 0.45, and 4.5 ppm, respectively. An additional group of adult beetles was immersed in a methoprene-water solution and allowed to reproduce in containers with untreated manure. Data from all treatment groups were compared with untreated control groups. Methoprene did not seem to hinder brood production at 0.45 ppm. Survival of O. taurus was not affected by methoprene-treated manure at 0.08 ppm or when parent beetles were immersed in methoprene-water solution. However, progeny survival was significantly reduced on manure treated with methoprene at 4.5 ppm. Mean pronotal width of O. taurus progeny was significantly smaller in beetles fed methoprene-treated manure (4.5 ppm). The low dose of 0.08 ppm did not affect pronotal widths nor did topical application of methoprene to adults affect pronotal widths in resulting offspring. Although some adverse effects of methoprene were observed at higher concentrations, use of methoprene at concentrations of 0.08 ppm as part of a horn fly control program likely would not greatly affect populations of O. taurus, the most common paracoprid dung beetle in North Carolina.


Assuntos
Besouros/efeitos dos fármacos , Hormônios Juvenis/farmacologia , Metoprene/farmacologia , Animais , Tamanho Corporal/efeitos dos fármacos , Besouros/anatomia & histologia , Besouros/fisiologia , Fertilidade/efeitos dos fármacos , Controle de Insetos/métodos , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Esterco
14.
Insects ; 10(1)2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30626022

RESUMO

Honey bees are major pollinators of agricultural and non-agricultural landscapes. In recent years, honey bee colonies have exhibited high annual losses and commercial beekeepers frequently report poor queen quality and queen failure as the primary causes. Honey bee colonies are highly vulnerable to compromised queen fertility, as each hive is headed by one reproductive queen. Queens mate with multiple drones (male bees) during a single mating period early in life in which they obtain enough spermatozoa to fertilize their eggs for the rest of their reproductive life span. The process of mating initiates numerous behavioral, physiological, and molecular changes that shape the fertility of the queen and her influence on the colony. For example, receipt of drone semen can modulate queen ovary activation, pheromone production, and subsequent worker retinue behavior. In addition, seminal fluid is a major component of semen that is primarily derived from drone accessory glands. It also contains a complex mixture of proteins such as proteases, antioxidants, and antimicrobial proteins. Seminal fluid proteins are essential for inducing post-mating changes in other insects such as Drosophila and thus they may also impact honey bee queen fertility and health. However, the specific molecules in semen and seminal fluid that initiate post-mating changes in queens are still unidentified. Herein, we summarize the mating biology of honey bees, the changes queens undergo during and after copulation, and the role of drone semen and seminal fluid in post-mating changes in queens. We then review the effects of seminal fluid proteins in insect reproduction and potential roles for honey bee drone seminal fluid proteins in queen reproduction and health. We finish by proposing future avenues of research. Further elucidating the role of drone fertility in queen reproductive health may contribute towards reducing colony losses and advancing honey bee stock development.

16.
J Med Entomol ; 44(4): 666-71, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17695023

RESUMO

House flies, Musca domestica L. (Diptera: Muscidae), were examined for their ability to harbor and transmit Newcastle disease virus (family Paramyxoviridae, genus Avulavirus, NDV) by using a mesogenic NDV strain. Laboratory-reared flies were experimentally exposed to NDV (Roakin strain) by allowing flies to imbibe an inoculum consisting of chicken embryo-propagated virus. NDV was detected in dissected crops and intestinal tissues from exposed flies for up to 96 and 24 h postexposure, respectively; no virus was detected in crops and intestines of sham-exposed flies. The potential of the house fly to directly transmit NDV to live chickens was examined by placing 14-d-old chickens in contact with NDV-exposed house flies 2 h after flies consumed NDV inoculum. NDV-exposed house flies contained approximately 10(4) 50% infectious doses (ID50) per fly, but no transmission of NDV was observed in chickens placed in contact with exposed flies at densities as high as 25 flies per bird. Subsequent dose-response studies demonstrated that oral exposure, the most likely route for fly-to-chicken transmission, required an NDV (Roakin) dose > or =10(6) ID50. These results indicate that house flies are capable of harboring NDV (Roakin) but that they are poor vectors of the virus because they carry an insufficient virus titer to cause infection.


Assuntos
Moscas Domésticas/virologia , Doença de Newcastle/transmissão , Vírus da Doença de Newcastle/isolamento & purificação , Animais , Galinhas/virologia , Vetores de Doenças
17.
Curr Opin Insect Sci ; 10: 163-169, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29588004

RESUMO

A recent abundance of studies investigating causes of honey bee (Apis mellifera) colony losses has led to enhanced recommendations in management practices with particular emphasis on breeding for resistant bee stocks. Here we review the latest advances in research which could improve the future of breeding programs. We discuss diversity in colonies particularly in breeding programs, giving special emphasis to recent improvement in cryopreservation of honey bee germplasm. We also review factors that affect the health and reproductive quality of queens and drones. We briefly discuss how techniques developed by scientists are finding more regular usage with breeders in the assessment of reproductive caste health and quality and in determining best management practices for breeding programs.

18.
Insect Biochem Mol Biol ; 47: 36-45, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24486775

RESUMO

Social context is often a primary regulator of social behavior, but genes that affect or are affected by social context have rarely been investigated. In social insects, caste specific pheromones are key modulators of social behavior, e.g., in honey bees the queen mandibular gland (MG) pheromone mediates reproductive dominance, its absence prompting ovary activation and queen pheromone production in workers. Here, we investigate the effect of social environment on genome-wide expression patterns in the MG, to determine how social context modulates expression of genes that, in turn alter social environment. We used microarrays to examine the MGs of virgin and mated queens, and queenright (QR) and queenless (QL) workers with or without activated ovaries. Approximately 2554 transcripts were significantly differentially expressed among these groups, with caste and social context being the main regulators of gene expression patterns, while physiological state (ovary activation) only minimally affecting gene expression. Thus, social context strongly regulates expression of genes, which, in turn, shape social environment. Among these, 25 genes that are putatively involved in caste selective production of the fatty-acid derived MG pheromone were differentially expressed in queens and workers. These genes whose functions correspond with enzymatic or transport processes emphasize the occurrence of disparate pheromone biosynthetic pathways for queens and workers, adding another dimension regarding the regulation of these important pheromones. Gene ontology analysis also revealed genes of different functional categories whose expression was impacted by caste or by the social environment, suggesting that the MG has broader functions than pheromone biosynthesis.


Assuntos
Abelhas/genética , Genômica , Comportamento Social , Animais , Abelhas/fisiologia , Comportamento Animal , Feminino , Expressão Gênica , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Masculino , Dados de Sequência Molecular , Feromônios/metabolismo , Meio Social
19.
PLoS One ; 8(11): e78637, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24236028

RESUMO

Pheromones mediate social interactions among individuals in a wide variety of species, from yeast to mammals. In social insects such as honey bees, pheromone communication systems can be extraordinarily complex and serve to coordinate behaviors among many individuals. One of the primary mediators of social behavior and organization in honey bee colonies is queen pheromone, which is produced by multiple glands. The types and quantities of chemicals produced differ significantly between virgin and mated queens, and recent studies have suggested that, in newly mated queens, insemination volume or quantity can affect pheromone production. Here, we examine the long-term impact of different factors involved during queen insemination on the chemical composition of the mandibular and Dufour's glands, two of the major sources of queen pheromone. Our results demonstrate that carbon dioxide (an anesthetic used in instrumental insemination), physical manipulation of genital tract (presumably mimicking the act of copulation), insemination substance (saline vs. semen), and insemination volume (1 vs. 8 µl) all have long-term effects on mandibular gland chemical profiles. In contrast, Dufour's gland chemical profiles were changed only upon insemination and were not influenced by exposure to carbon dioxide, manipulation, insemination substance or volume. These results suggest that the chemical contents of these two glands are regulated by different neuro-physiological mechanisms. Furthermore, workers responded differently to the different mandibular gland extracts in a choice assay. Although these studies must be validated in naturally mated queens of varying mating quality, our results suggest that while the chemical composition of Dufour's gland is associated with mating status, that of the mandibular glands is associated with both mating status and insemination success. Thus, the queen appears to be signaling both status and reproductive quality to the workers, which may impact worker behavior and physiology as well as social organization and productivity of the colony.


Assuntos
Abelhas/metabolismo , Glândulas Exócrinas/metabolismo , Feromônios/metabolismo , Animais , Feminino , Regulação da Expressão Gênica , Inseminação , Masculino , Reprodução/fisiologia , Comportamento Sexual Animal
20.
J Insect Physiol ; 58(8): 1082-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22579504

RESUMO

Honey bee colonies consist of tens of thousands of workers and a single reproductive queen that produces a pheromone blend which maintains colony organization. Previous studies indicated that the insemination quantity and volume alter queen mandibular pheromone profiles. In our 11-month long field study we show that workers are more attracted to high-volume versus low-volume inseminated queens, however, there were no significant differences between treatments in the number of queen cells built by workers in preparation for supersedure. Workers exposed to low-volume inseminated queens initiated production of queen-like esters in their Dufour's glands, but there were no significant difference in the amount of methyl farnesoate and juvenile hormone in worker hemolymph. Lastly, queen overwintering survival was unexpectedly lower in high-volume inseminated queens. Our results suggest that the queen insemination volume could ultimately affect colony health and productivity.


Assuntos
Abelhas/fisiologia , Animais , Comportamento Animal , Masculino , Feromônios/metabolismo , Comportamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA