Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Physiol Rev ; 96(4): 1385-447, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27582250

RESUMO

The pancreatic ß-cell secretes insulin in response to elevated plasma glucose. This review applies an external bioenergetic critique to the central processes of glucose-stimulated insulin secretion, including glycolytic and mitochondrial metabolism, the cytosolic adenine nucleotide pool, and its interaction with plasma membrane ion channels. The control mechanisms responsible for the unique responsiveness of the cell to glucose availability are discussed from bioenergetic and metabolic control standpoints. The concept of coupling factor facilitation of secretion is critiqued, and an attempt is made to unravel the bioenergetic basis of the oscillatory mechanisms controlling secretion. The need to consider the physiological constraints operating in the intact cell is emphasized throughout. The aim is to provide a coherent pathway through an extensive, complex, and sometimes bewildering literature, particularly for those unfamiliar with the field.


Assuntos
Metabolismo Energético/fisiologia , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animais , Cálcio/metabolismo , Humanos , Canais Iônicos/metabolismo , Mitocôndrias/metabolismo
2.
J Biol Chem ; 292(17): 7189-7207, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28270511

RESUMO

Partitioning of ATP generation between glycolysis and oxidative phosphorylation is central to cellular bioenergetics but cumbersome to measure. We describe here how rates of ATP generation by each pathway can be calculated from simultaneous measurements of extracellular acidification and oxygen consumption. We update theoretical maximum ATP yields by mitochondria and cells catabolizing different substrates. Mitochondrial P/O ratios (mol of ATP generated per mol of [O] consumed) are 2.73 for oxidation of pyruvate plus malate and 1.64 for oxidation of succinate. Complete oxidation of glucose by cells yields up to 33.45 ATP/glucose with a maximum P/O of 2.79. We introduce novel indices to quantify bioenergetic phenotypes. The glycolytic index reports the proportion of ATP production from glycolysis and identifies cells as primarily glycolytic (glycolytic index > 50%) or primarily oxidative. The Warburg effect is a chronic increase in glycolytic index, quantified by the Warburg index. Additional indices quantify the acute flexibility of ATP supply. The Crabtree index and Pasteur index quantify the responses of oxidative and glycolytic ATP production to alterations in glycolysis and oxidative reactions, respectively; the supply flexibility index quantifies overall flexibility of ATP supply; and the bioenergetic capacity quantifies the maximum rate of total ATP production. We illustrate the determination of these indices using C2C12 myoblasts. Measurement of ATP use revealed no significant preference for glycolytic or oxidative ATP by specific ATP consumers. Overall, we demonstrate how extracellular fluxes quantitatively reflect intracellular ATP turnover and cellular bioenergetics. We provide a simple spreadsheet to calculate glycolytic and oxidative ATP production rates from raw extracellular acidification and respiration data.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/química , Oxigênio/química , Animais , Linhagem Celular , Citoplasma/metabolismo , Metabolismo Energético , Glucose/metabolismo , Glicogênio/química , Glicólise , Homeostase , Camundongos , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Fenótipo
3.
Biochim Biophys Acta ; 1847(2): 171-181, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25449966

RESUMO

BACKGROUND: The rate at which cells acidify the extracellular medium is frequently used to report glycolytic rate, with the implicit assumption that conversion of uncharged glucose or glycogen to lactate(-)+H(+) is the only significant source of acidification. However, another potential source of extracellular protons is the production of CO2 during substrate oxidation: CO2 is hydrated to H2CO3, which then dissociates to HCO3(-)+H(+). METHODS: O2 consumption and pH were monitored in a popular platform for measuring extracellular acidification (the Seahorse XF Analyzer). RESULTS: We found that CO2 produced during respiration caused almost stoichiometric release of H(+) into the medium. With C2C12 myoblasts given glucose, respiration-derived CO2 contributed 34% of the total extracellular acidification. When glucose was omitted or replaced by palmitate or pyruvate, this value was 67-100%. Analysis of primary cells, cancer cell lines, stem cell lines, and isolated synaptosomes revealed contributions of CO2-produced acidification that were usually substantial, ranging from 3% to 100% of the total acidification rate. CONCLUSION: Measurement of glycolytic rate using extracellular acidification requires differentiation between respiratory and glycolytic acid production. GENERAL SIGNIFICANCE: The data presented here demonstrate the importance of this correction when extracellular acidification is used for quantitative measurement of glycolytic flux to lactate. We describe a simple way to correct the measured extracellular acidification rate for respiratory acid production, using simultaneous measurement of oxygen consumption rate. SUMMARY STATEMENT: Extracellular acidification is often assumed to result solely from glycolytic lactate production, but respiratory CO2 also contributes. We demonstrate that extracellular acidification by myoblasts given glucose is 66% glycolytic and 34% respiratory and describe a method to differentiate these sources.


Assuntos
Glicólise , Consumo de Oxigênio , Animais , Dióxido de Carbono/metabolismo , Células Cultivadas , Concentração de Íons de Hidrogênio , Ácido Láctico/metabolismo , Camundongos , Ratos
4.
Biochem J ; 471(1): 111-22, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26243883

RESUMO

In the presence of high glucose or pyruvate, INS-1 832/13 insulinoma cells undergo stochastic oscillations in plasma membrane potential (Δψp) leading to associated fluctuations in cytosolic free Ca(2+) concentration ([Ca(2+)]c). Oscillations are not driven by upstream metabolic fluctuations, but rather by autonomous ionic mechanisms, the details of which are unclear. We have investigated the nature of the oscillator, with simultaneous fluorescence monitoring of Δψp, [Ca(2+)]c and exocytosis at single-cell resolution, combined with analysis of the occurrence, frequency and amplitude of Δψp oscillations. Oscillations were closely coupled to exocytosis, indicated by coincident synaptopHluorin fluorescence enhancement. L-type Ca(2+) channel inhibitors enhanced Δψp and [Ca(2+)]c oscillation frequency in the presence of pyruvate, but abolished the sustained [Ca(2+)]c response following KCl depolarization. The L-type Ca(2+) channel inhibitor isradipine did not inhibit oscillation-linked exocytosis. The T-type Ca(2+) channel inhibitor NNC 55-0396 inhibited Δψp and [Ca(2+)]c oscillations, implying that T-type Ca(2+) channels trigger oscillations and consequent exocytosis. Since distinct ion channels operate in oscillating and non-oscillating cells, quantitative analysis of Δψp and [Ca(2+)]c oscillations in a ß-cell population may help to improve our understanding of the link between metabolism and insulin secretion.


Assuntos
Relógios Biológicos/fisiologia , Sinalização do Cálcio/fisiologia , Exocitose/fisiologia , Insulina/metabolismo , Potenciais da Membrana/fisiologia , Relógios Biológicos/efeitos dos fármacos , Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular Tumoral , Exocitose/efeitos dos fármacos , Humanos , Secreção de Insulina , Potenciais da Membrana/efeitos dos fármacos
5.
J Biol Chem ; 289(6): 3786-98, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24356960

RESUMO

Glucotoxicity in pancreatic ß-cells is a well established pathogenetic process in type 2 diabetes. It has been suggested that metabolism-derived reactive oxygen species perturb the ß-cell transcriptional machinery. Less is known about altered mitochondrial function in this condition. We used INS-1 832/13 cells cultured for 48 h in 2.8 mm glucose (low-G), 16.7 mm glucose (high-G), or 2.8 mm glucose plus 13.9 mm pyruvate (high-P) to identify metabolic perturbations. High-G cells showed decreased responsiveness, relative to low-G cells, with respect to mitochondrial membrane hyperpolarization, plasma membrane depolarization, and insulin secretion, when stimulated acutely with 16.7 mm glucose or 10 mm pyruvate. In contrast, high-P cells were functionally unimpaired, eliminating chronic provision of saturating mitochondrial substrate as a cause of glucotoxicity. Although cellular insulin content was depleted in high-G cells, relative to low-G and high-P cells, cellular functions were largely recovered following a further 24-h culture in low-G medium. After 2 h at 2.8 mm glucose, high-G cells did not retain increased levels of glycolytic or TCA cycle intermediates but nevertheless displayed increased glycolysis, increased respiration, and an increased mitochondrial proton leak relative to low-G and high-P cells. This notwithstanding, titration of low-G cells with low protonophore concentrations, monitoring respiration and insulin secretion in parallel, showed that the perturbed insulin secretion of high-G cells could not be accounted for by increased proton leak. The present study supports the idea that glucose-induced disturbances of stimulus-secretion coupling by extramitochondrial metabolism upstream of pyruvate, rather than exhaustion from metabolic overload, underlie glucotoxicity in insulin-producing cells.


Assuntos
Ciclo do Ácido Cítrico/efeitos dos fármacos , Glucose/farmacologia , Glicólise/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ácido Pirúvico/farmacologia , Edulcorantes/farmacologia , Linhagem Celular , Ciclo do Ácido Cítrico/fisiologia , Glucose/metabolismo , Glicólise/fisiologia , Humanos , Insulina , Células Secretoras de Insulina/citologia , Potencial da Membrana Mitocondrial/fisiologia , Ácido Pirúvico/metabolismo , Edulcorantes/metabolismo , Fatores de Tempo
6.
J Bioenerg Biomembr ; 47(1-2): 63-74, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25172197

RESUMO

Mitochondria play multiple roles in the maintenance of neuronal function under physiological and pathological conditions. In addition to ATP generation, they can act as major short-term calcium sinks and can both generate, and be damaged by, reactive oxygen species. Two complementary preparations have been extensively employed to investigate in situ neuronal mitochondrial bioenergetics, primary neuronal cultures and acutely isolated nerve terminals, synaptosomes. A major focus of the cell culture preparation has been the investigation of glutamate excitotoxicity. Oxidative phosphorylation, calcium transport and reactive oxygen species play complex interlocking roles in the life and death of the glutamate exposed neuron. Synaptosomes may be isolated from specific brain regions at any developmental stage and therefore provide a valuable ex vivo approach in studying mouse models. Recent advances have allowed synaptosomal bioenergetics to be studied on a microgram scale, and, in combination with approaches to correct for functional and transmitter heterogeneity, have allowed hypotheses concerning presynaptic mitochondrial dysfunction to be tested on a variety of genetic models of neurodegenerative disorders.


Assuntos
Técnicas de Cultura de Células/métodos , Metabolismo Energético , Mitocôndrias/metabolismo , Neurônios/metabolismo , Sinaptossomos/metabolismo , Animais , Sobrevivência Celular , Camundongos , Neurônios/citologia
9.
J Neurosci ; 32(47): 16775-84, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23175831

RESUMO

Depressed cortical energy supply and impaired synaptic function are predominant associations of Alzheimer's disease (AD). To test the hypothesis that presynaptic bioenergetic deficits are associated with the progression of AD pathogenesis, we compared bioenergetic variables of cortical and hippocampal presynaptic nerve terminals (synaptosomes) from commonly used mouse models with AD-like phenotypes (J20 age 6 months, Tg2576 age 16 months, and APP/PS age 9 and 14 months) to age-matched controls. No consistent bioenergetic deficiencies were detected in synaptosomes from the three models; only APP/PS cortical synaptosomes from 14-month-old mice showed an increase in respiration associated with proton leak. J20 mice were chosen for a highly stringent investigation of mitochondrial function and content. There were no significant differences in the quality of the synaptosomal preparations or the mitochondrial volume fraction. Furthermore, respiratory variables, calcium handling, and membrane potentials of synaptosomes from symptomatic J20 mice under calcium-imposed stress were not consistently impaired. The recovery of marker proteins during synaptosome preparation was the same, ruling out the possibility that the lack of functional bioenergetic defects in synaptosomes from J20 mice was due to the selective loss of damaged synaptosomes during sample preparation. Our results support the conclusion that the intrinsic bioenergetic capacities of presynaptic nerve terminals are maintained in these symptomatic AD mouse models.


Assuntos
Doença de Alzheimer/metabolismo , Metabolismo Energético/fisiologia , Terminações Pré-Sinápticas/fisiologia , Envelhecimento/fisiologia , Animais , Cálcio/fisiologia , Sinalização do Cálcio/fisiologia , Feminino , Humanos , Indicadores e Reagentes , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Consumo de Oxigênio , Terminações Pré-Sinápticas/metabolismo , Sinaptossomos/metabolismo , Sinaptossomos/ultraestrutura
10.
J Biol Chem ; 287(19): 15706-17, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22418435

RESUMO

Oscillations in plasma membrane potential play a central role in glucose-induced insulin secretion from pancreatic ß-cells and related insulinoma cell lines. We have employed a novel fluorescent plasma membrane potential (Δψ(p)) indicator in combination with indicators of cytoplasmic free Ca(2+) ([Ca(2+)](c)), mitochondrial membrane potential (Δψ(m)), matrix ATP concentration, and NAD(P)H fluorescence to investigate the role of mitochondria in the generation of plasma membrane potential oscillations in clonal INS-1 832/13 ß-cells. Elevated glucose caused oscillations in plasma membrane potential and cytoplasmic free Ca(2+) concentration over the same concentration range required for insulin release, although considerable cell-to-cell heterogeneity was observed. Exogenous pyruvate was as effective as glucose in inducing oscillations, both in the presence and absence of 2.8 mM glucose. Increased glucose and pyruvate each produced a concentration-dependent mitochondrial hyperpolarization. The causal relationships between pairs of parameters (Δψ(p) and [Ca(2+)](c), Δψ(p) and NAD(P)H, matrix ATP and [Ca(2+)](c), and Δψ(m) and [Ca(2+)](c)) were investigated at single cell level. It is concluded that, in these ß-cells, depolarizing oscillations in Δψ(p) are not initiated by mitochondrial bioenergetic changes. Instead, regardless of substrate, it appears that the mitochondria may simply be required to exceed a critical bioenergetic threshold to allow release of insulin. Once this threshold is exceeded, an autonomous Δψ(p) oscillatory mechanism is initiated.


Assuntos
Metabolismo Energético , Glicólise , Insulina/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Glucose/farmacologia , Secreção de Insulina , Insulinoma/metabolismo , Insulinoma/patologia , Insulinoma/fisiopatologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Microscopia de Fluorescência , Mitocôndrias/fisiologia , Ácido Pirúvico/farmacologia , Ratos
11.
Acta Physiol (Oxf) ; 237(4): e13938, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36692160

RESUMO

Exactly 50 years ago, I was a post-doc in the laboratory of Olov Lindberg in Stockholm measuring fatty acid oxidation by mitochondria isolated from thermogenic brown adipose tissue, when we noticed a curious nonlinearity in the respiration rate. This initiated a convoluted chain of experiments revealing that the mitochondria were textbook demonstrations of the then novel and highly controversial "chemiosmotic hypothesis" of Peter Mitchell and that thermogenesis was regulated by a proton short-circuit, mediated by a 32 kDa "uncoupling protein," UCP1, activated by fatty acid. This review is a personal account of the research into the bioenergetics of isolated brown adipocytes and isolated mitochondria, which led, after fifteen years of investigation, to what is still accepted as the "canonical" UCP1-mediated mechanism of nonshivering thermogenesis, uniting whole animal physiology with mitochondrial bioenergetics.


Assuntos
Tecido Adiposo Marrom , Proteínas Mitocondriais , Animais , Tecido Adiposo Marrom/metabolismo , Proteínas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Metabolismo Energético , Termogênese , Ácidos Graxos/metabolismo , Proteína Desacopladora 1/metabolismo
12.
Nat Metab ; 5(1): 21-28, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36624158

RESUMO

Brown adipose tissue is specialized for non-shivering thermogenesis, combining lipolysis with an extremely active mitochondrial electron transport chain and a unique regulated uncoupling protein, UCP1, allowing unrestricted respiration. Current excitement focuses on the presence of brown adipose tissue in humans and the possibility that it may contribute to diet-induced thermogenesis, countering obesity and obesity-related disease as well as protecting cardio-metabolic health. In common with other tissues displaying a high, variable respiration, the tissue possesses a creatine pool and mitochondrial and cytosolic creatine kinase isoforms. Genetic and pharmacological manipulation of these components have pleiotropic effects that appear to influence diet- and cold-induced metabolism in vivo and modeled in vitro. These findings have been used to advance the concept of a UCP1-independent diet-induced thermogenic mechanism based on a dissipative hydrolysis of phosphocreatine in beige and brown adipose tissue. Here we review the in vivo and in vitro experimental basis for this hypothesis, and explore alternative explanations. We conclude that there is currently no convincing evidence for a significant futile creatine cycle in these tissues.


Assuntos
Tecido Adiposo Marrom , Creatina , Humanos , Tecido Adiposo Marrom/metabolismo , Creatina/metabolismo , Obesidade/metabolismo , Dieta , Termogênese
13.
J Neurosci ; 31(12): 4524-34, 2011 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-21430153

RESUMO

Dopaminergic neurons of the substantia nigra pars compacta are defective in Parkinson's disease, but the specificity of this dysfunction is not understood. One hypothesis is that mitochondrial bioenergetic capacity is intrinsically lower in striatal dopaminergic presynaptic nerve varicosities, making them unusually susceptible to inhibition of electron transport by oxidative damage. To test this hypothesis, we separated isolated synaptosomes bearing dopamine transporters using immunomagnetic beads and compared their respiration with that of the residual nondopaminergic synaptosomes. As predicted, dopaminergic synaptosomes from striatum had lower respiratory rates. However, so did dopaminergic synaptosomes from cortex, indicating a lack of the predicted striatal specificity. We used fluorescent probes to analyze the bioenergetic competence of individual synaptosomes in the two fractions. The respiratory differences became nonsignificant when respiration rates were normalized to the number of respiration-competent synaptosomes, suggesting that differences reflected the quality of the different fractions. To circumvent damage induced by synaptosomal separation, we monitored membrane potentials in whole unseparated single synaptosomes using fluorescent imaging, and then identified the dopaminergic subpopulation using a fluorescent dopamine transporter substrate (ASP(+) [4-(4-diethylaminostyryl)-N-methylpyridinium iodide]). The capacity of dopaminergic and nondopaminergic synaptosomes to maintain plasma membrane and mitochondrial membrane potential under several stresses did not differ. In addition, this capacity did not decline in either subpopulation with age, a risk factor for Parkinson's disease. We conclude that the intrinsic bioenergetic capacities of dopaminergic and nondopaminergic presynaptic synaptosomes from mice do not differ.


Assuntos
Dopamina/fisiologia , Metabolismo Energético/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Sinaptossomos/fisiologia , Envelhecimento/fisiologia , Animais , Cálcio/fisiologia , Corpo Estriado/fisiologia , Dopamina/metabolismo , Feminino , Imunofluorescência , Indicadores e Reagentes , Cinética , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Consumo de Oxigênio , Compostos de Piridínio/farmacologia , Sinaptossomos/metabolismo
14.
J Physiol ; 590(12): 2845-71, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22495585

RESUMO

Mitochondrial membrane potential (ΔΨM) is a central intermediate in oxidative energy metabolism. Although ΔΨM is routinely measured qualitatively or semi-quantitatively using fluorescent probes, its quantitative assay in intact cells has been limited mostly to slow, bulk-scale radioisotope distribution methods. Here we derive and verify a biophysical model of fluorescent potentiometric probe compartmentation and dynamics using a bis-oxonol-type indicator of plasma membrane potential (ΔΨP) and the ΔΨM probe tetramethylrhodamine methyl ester (TMRM) using fluorescence imaging and voltage clamp. Using this model we introduce a purely fluorescence-based quantitative assay to measure absolute values of ΔΨM in millivolts as they vary in time in individual cells in monolayer culture. The ΔΨP-dependent distribution of the probes is modelled by Eyring rate theory. Solutions of the model are used to deconvolute ΔΨP and ΔΨM in time from the probe fluorescence intensities, taking into account their slow, ΔΨP-dependent redistribution and Nernstian behaviour. The calibration accounts for matrix:cell volume ratio, high- and low-affinity binding, activity coefficients, background fluorescence and optical dilution, allowing comparisons of potentials in cells or cell types differing in these properties. In cultured rat cortical neurons, ΔΨM is −139 mV at rest, and is regulated between −108 mV and −158 mV by concerted increases in ATP demand and Ca2+-dependent metabolic activation. Sensitivity analysis showed that the standard error of the mean in the absolute calibrated values of resting ΔΨM including all biological and systematic measurement errors introduced by the calibration parameters is less than 11 mV. Between samples treated in different ways, the typical equivalent error is ∼5 mV.


Assuntos
Potencial da Membrana Mitocondrial , Neurônios/fisiologia , Imagens com Corantes Sensíveis à Voltagem/métodos , Animais , Cálcio/metabolismo , Células Cultivadas , Metabolismo Energético , Corantes Fluorescentes , Modelos Teóricos , Neurônios/metabolismo , Técnicas de Patch-Clamp , Ratos , Ratos Endogâmicos , Rodaminas
15.
Biochem J ; 435(2): 297-312, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21726199

RESUMO

Assessing mitochondrial dysfunction requires definition of the dysfunction to be investigated. Usually, it is the ability of the mitochondria to make ATP appropriately in response to energy demands. Where other functions are of interest, tailored solutions are required. Dysfunction can be assessed in isolated mitochondria, in cells or in vivo, with different balances between precise experimental control and physiological relevance. There are many methods to measure mitochondrial function and dysfunction in these systems. Generally, measurements of fluxes give more information about the ability to make ATP than do measurements of intermediates and potentials. For isolated mitochondria, the best assay is mitochondrial respiratory control: the increase in respiration rate in response to ADP. For intact cells, the best assay is the equivalent measurement of cell respiratory control, which reports the rate of ATP production, the proton leak rate, the coupling efficiency, the maximum respiratory rate, the respiratory control ratio and the spare respiratory capacity. Measurements of membrane potential provide useful additional information. Measurement of both respiration and potential during appropriate titrations enables the identification of the primary sites of effectors and the distribution of control, allowing deeper quantitative analyses. Many other measurements in current use can be more problematic, as discussed in the present review.


Assuntos
Células/metabolismo , Células/ultraestrutura , Técnicas de Laboratório Clínico , Mitocôndrias/fisiologia , Doenças Mitocondriais/diagnóstico , Animais , Células/patologia , Transporte de Elétrons/fisiologia , Metabolismo Energético , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Doenças Mitocondriais/fisiopatologia , Modelos Biológicos , Prótons
16.
Biochim Biophys Acta Bioenerg ; 1862(7): 148428, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33798544

RESUMO

Non-shivering thermogenesis in brown adipose tissue is mediated by uncoupling protein 1 (UCP1), which provides a carefully regulated proton re-entry pathway across the mitochondrial inner membrane operating in parallel to the ATP synthase and allowing respiration, and hence thermogenesis, to be released from the constraints of respiratory control. In the 40 years since UCP1 was first described, an extensive, and frequently contradictory, literature has accumulated, focused on the acute physiological regulation of the protein by fatty acids, purine nucleotides and possible additional factors. The purpose of this review is to examine, in detail, the experimental evidence underlying these proposed mechanisms. Emphasis will be placed on the methodologies employed and their relation to the physiological constraints under which the protein functions in the intact cell. The nature of the endogenous, UCP1-independent, proton leak will also be discussed. Finally, the troubled history of the putative novel uncoupling proteins, UCP2 and UCP3, will be evaluated.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Desacoplamento Mitocondrial/metabolismo , Prótons , Termogênese , Humanos , Potenciais da Membrana
17.
J Biol Chem ; 284(47): 32395-404, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-19797055

RESUMO

The biochemical mechanisms underlying glucose-stimulated insulin secretion from pancreatic beta-cells are not completely understood. To identify metabolic disturbances in beta-cells that impair glucose-stimulated insulin secretion, we compared two INS-1-derived clonal beta-cell lines, which are glucose-responsive (832/13 cells) or glucose-unresponsive (832/2 cells). To this end, we analyzed a number of parameters in glycolytic and mitochondrial metabolism, including mRNA expression of genes involved in cellular energy metabolism. We found that despite a marked impairment of glucose-stimulated insulin secretion, 832/2 cells exhibited a higher rate of glycolysis. Still, no glucose-induced increases in respiratory rate, ATP production, or respiratory chain complex I, III, and IV activities were seen in the 832/2 cells. Instead, 832/2 cells, which expressed lactate dehydrogenase A, released lactate regardless of ambient glucose concentrations. In contrast, the glucose-responsive 832/13 line lacked lactate dehydrogenase and did not produce lactate. Accordingly, in 832/2 cells mRNA expression of genes for glycolytic enzymes were up-regulated, whereas mitochondria-related genes were down-regulated. This could account for a Warburg-like effect in the 832/2 cell clone, lacking in 832/13 cells as well as primary beta-cells. In human islets, mRNA expression of genes such as lactate dehydrogenase A and hexokinase I correlated positively with HbA(1c) levels, reflecting perturbed long term glucose homeostasis, whereas that of Slc2a2 (glucose transporter 2) correlated negatively with HbA(1c) and thus better metabolic control. We conclude that tight metabolic regulation enhancing mitochondrial metabolism and restricting glycolysis in 832/13 cells is required for clonal beta-cells to secrete insulin robustly in response to glucose. Moreover, a similar expression pattern of genes controlling glycolytic and mitochondrial metabolism in clonal beta-cells and human islets was observed, suggesting that a similar prioritization of mitochondrial metabolism is required in healthy human beta-cells. The 832 beta-cell lines may be helpful tools to resolve metabolic perturbations occurring in Type 2 diabetes.


Assuntos
Glucose/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Mitocôndrias/metabolismo , Adulto , Idoso , Células Cultivadas , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Glicólise , Homeostase , Humanos , Secreção de Insulina , Lactatos/metabolismo , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos
18.
Biochim Biophys Acta ; 1787(11): 1416-24, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19298790

RESUMO

The ability of isolated brain mitochondria to accumulate, store and release calcium has been extensively characterized. Extrapolation to the intact neuron led to predictions that the in situ mitochondria would reversibly accumulate Ca(2+) when the concentration of the cation in the vicinity of the mitochondria rose above the 'set-point' at which uptake and efflux were in balance, storing Ca(2+) as a complex with phosphate, and slowly releasing the cation when plasma membrane ion pumps lowered the cytoplasmic free Ca(2+). Excessive accumulation of the cation was predicted to lead to activation of the permeability transition, with catastrophic consequences for the neuron. Each of these predictions has been confirmed with intact neurons, and there is convincing evidence for the permeability transition in cellular Ca(2+) overload associated with glutamate excitotoxicity and stroke, while the neurodegenerative disease in which possible defects in mitochondrial Ca(2+) handling have been most intensively investigated is Huntington's Disease. In this brief review evidence that mitochondrial Ca(2+) transport is relevant to neuronal survival in these conditions will be discussed.


Assuntos
Encéfalo/metabolismo , Cálcio/metabolismo , Mitocôndrias/metabolismo , Animais , Encefalopatias/metabolismo , Humanos , Doença de Huntington/metabolismo , Transporte de Íons , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Poro de Transição de Permeabilidade Mitocondrial
19.
Biochem Soc Trans ; 38(2): 457-9, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20298202

RESUMO

Synaptosomes (isolated nerve terminals) have been studied for more than 40 years. The preparation allows aspects of transmitter metabolism and release to be studied ex vivo from specific brain regions of animals of any age. Conditions can be devised to enable the terminals to fire spontaneous action potentials, allowing the presynaptic control of glutamate exocytosis to be studied. Recent developments have greatly increased the sensitivity with which the bioenergetics of the intra-synaptosomal mitochondria can be investigated.


Assuntos
Encefalopatias Metabólicas/etiologia , Metabolismo Energético/fisiologia , Neurotransmissores/metabolismo , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/fisiologia , Animais , Encefalopatias Metabólicas/metabolismo , Encefalopatias Metabólicas/patologia , Encefalopatias Metabólicas/fisiopatologia , Humanos , Terminações Pré-Sinápticas/patologia , Processos Estocásticos , Sinaptossomos/metabolismo , Sinaptossomos/fisiologia
20.
Biochim Biophys Acta ; 1777(7-8): 550-6, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18423395

RESUMO

It is more than forty years since Peter Mitchell published his first 'little grey book' laying out his chemiosmotic hypothesis. Although ideas about the molecular mechanisms of the proton pumps have evolved considerably since then, his concept of 'coupling through proton circuits' remains remarkably prescient, and has provided the inspiration for the research careers of this author and many others. This review is a personal account of how the proton circuit has been followed from the little grey book, via brown fat and calcium transport to investigations into the life and death of neurons, Hercule Poirot's 'little grey cells'.


Assuntos
Fenômenos Fisiológicos Celulares , Metabolismo Energético , Mitocôndrias/metabolismo , Prótons , Tecido Adiposo Marrom/metabolismo , Animais , Cálcio/metabolismo , Membrana Celular/metabolismo , Modelos Biológicos , Consumo de Oxigênio , Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA