Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Nature ; 603(7902): 715-720, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35104836

RESUMO

The emergence of SARS-CoV-2 variants of concern with progressively increased transmissibility between humans is a threat to global public health. The Omicron variant of SARS-CoV-2 also evades immunity from natural infection or vaccines1, but it is unclear whether its exceptional transmissibility is due to immune evasion or intrinsic virological properties. Here we compared the replication competence and cellular tropism of the wild-type virus and the D614G, Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2) and Omicron (B.1.1.529) variants in ex vivo explant cultures of human bronchi and lungs. We also evaluated the dependence on TMPRSS2 and cathepsins for infection. We show that Omicron replicates faster than all other SARS-CoV-2 variants studied in the bronchi but less efficiently in the lung parenchyma. All variants of concern have similar cellular tropism compared to the wild type. Omicron is more dependent on cathepsins than the other variants of concern tested, suggesting that the Omicron variant enters cells through a different route compared with the other variants. The lower replication competence of Omicron in the human lungs may explain the reduced severity of Omicron that is now being reported in epidemiological studies, although determinants of severity are multifactorial. These findings provide important biological correlates to previous epidemiological observations.


Assuntos
Brônquios/virologia , Pulmão/virologia , SARS-CoV-2/crescimento & desenvolvimento , Tropismo Viral , Replicação Viral , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/virologia , Catepsinas/metabolismo , Chlorocebus aethiops , Endocitose , Humanos , Técnicas In Vitro , SARS-CoV-2/imunologia , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Técnicas de Cultura de Tecidos , Células Vero
2.
Nature ; 583(7818): 834-838, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32408338

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus with high nucleotide identity to SARS-CoV and to SARS-related coronaviruses that have been detected in horseshoe bats, has spread across the world and had a global effect on healthcare systems and economies1,2. A suitable small animal model is needed to support the development of vaccines and therapies. Here we report the pathogenesis and transmissibility of SARS-CoV-2 in golden (Syrian) hamsters (Mesocricetus auratus). Immunohistochemistry assay demonstrated the presence of viral antigens in nasal mucosa, bronchial epithelial cells and areas of lung consolidation on days 2 and 5 after inoculation with SARS-CoV-2, followed by rapid viral clearance and pneumocyte hyperplasia at 7 days after inoculation. We also found viral antigens in epithelial cells of the duodenum, and detected viral RNA in faeces. Notably, SARS-CoV-2 was transmitted efficiently from inoculated hamsters to naive hamsters by direct contact and via aerosols. Transmission via fomites in soiled cages was not as efficient. Although viral RNA was continuously detected in the nasal washes of inoculated hamsters for 14 days, the communicable period was short and correlated with the detection of infectious virus but not viral RNA. Inoculated and naturally infected hamsters showed apparent weight loss on days 6-7 post-inoculation or post-contact; all hamsters returned to their original weight within 14 days and developed neutralizing antibodies. Our results suggest that features associated with SARS-CoV-2 infection in golden hamsters resemble those found in humans with mild SARS-CoV-2 infections.


Assuntos
Betacoronavirus/patogenicidade , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Pulmão/patologia , Pulmão/virologia , Mesocricetus/virologia , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , Aerossóis , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/virologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Antígenos Virais/isolamento & purificação , Antígenos Virais/metabolismo , Betacoronavirus/imunologia , Betacoronavirus/isolamento & purificação , Betacoronavirus/metabolismo , Brônquios/patologia , Brônquios/virologia , COVID-19 , Infecções por Coronavirus/imunologia , Duodeno/virologia , Fômites/virologia , Abrigo para Animais , Rim/virologia , Masculino , Mesocricetus/imunologia , Mucosa Nasal/virologia , Pandemias , Pneumonia Viral/imunologia , RNA Viral/análise , SARS-CoV-2 , Carga Viral , Redução de Peso
3.
J Virol ; 97(12): e0136923, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38038429

RESUMO

IMPORTANCE: Viral host adaptation plays an important role in inter-species transmission of coronaviruses and influenza viruses. Multiple human-adaptive mutations have been identified in influenza viruses but not so far in MERS-CoV that circulates widely in dromedary camels in the Arabian Peninsula leading to zoonotic transmission. Here, we analyzed clade B MERS-CoV sequences and identified an amino acid substitution L232F in nsp6 that repeatedly occurs in human MERS-CoV. Using a loss-of-function reverse genetics approach, we found the nsp6 L232F conferred increased viral replication competence in vitro, in cultures of the upper human respiratory tract ex vivo, and in lungs of mice infected in vivo. Our results showed that nsp6 L232F may be an adaptive mutation associated with zoonotic transmission of MERS-CoV. This study highlighted the capacity of MERS-CoV to adapt to transmission to humans and also the need for continued surveillance of MERS-CoV in camels.


Assuntos
Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Proteínas não Estruturais Virais , Animais , Humanos , Camundongos , Substituição de Aminoácidos , Camelus , Infecções por Coronavirus/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Mutação , Proteínas não Estruturais Virais/genética
4.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34099577

RESUMO

Coronaviruses are pathogens of pandemic potential. Middle East respiratory syndrome coronavirus (MERS-CoV) causes a zoonotic respiratory disease of global public health concern, and dromedary camels are the only proven source of zoonotic infection. More than 70% of MERS-CoV-infected dromedaries are found in East, North, and West Africa, but zoonotic MERS disease is only reported from the Arabian Peninsula. We compared viral replication competence of clade A and B viruses from the Arabian Peninsula with genetically diverse clade C viruses found in East (Egypt, Kenya, and Ethiopia), North (Morocco), and West (Nigeria and Burkina Faso) Africa. Viruses from Africa had lower replication competence in ex vivo cultures of the human lung and in lungs of experimentally infected human-DPP4 (hDPP4) knockin mice. We used lentivirus pseudotypes expressing MERS-CoV spike from Saudi Arabian clade A prototype strain (EMC) or African clade C1.1 viruses and demonstrated that clade C1.1 spike was associated with reduced virus entry into the respiratory epithelial cell line Calu-3. Isogenic EMC viruses with spike protein from EMC or clade C1.1 generated by reverse genetics showed that the clade C1.1 spike was associated with reduced virus replication competence in Calu-3 cells in vitro, in ex vivo human bronchus, and in lungs of hDPP4 knockin mice in vivo. These findings may explain why zoonotic MERS disease has not been reported from Africa so far, despite exposure to and infection with MERS-CoV.


Assuntos
Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Zoonoses/virologia , África , Animais , Arábia , Linhagem Celular , Dipeptidil Peptidase 4/metabolismo , Técnicas de Introdução de Genes , Humanos , Cinética , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Fenótipo , Filogenia , Glicoproteína da Espícula de Coronavírus/metabolismo , Replicação Viral/fisiologia
5.
J Infect Dis ; 227(10): 1143-1152, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35776136

RESUMO

BACKGROUND: The epidemiological advantage of Omicron variant is evidenced by its rapid spread and the ability to outcompete prior variants. Among Omicron sublineages, early outbreaks were dominated by BA.1, while BA.2 has gained dominance since February 2022. The relative pathogenicity and transmissibility of BA.1 and BA.2 have not been fully defined. METHODS: We compared viral loads and clinical signs in Syrian hamsters after infection with BA.1, BA.2, or D614G variant. A competitive transmission model and next-generation sequencing were used to compare the relative transmission potential of BA.1 and BA.2. RESULTS: BA.1 and BA.2 caused no apparent clinical signs, while D614G caused more than 10% weight loss. Higher viral loads were detected in nasal wash samples and nasal turbinate and lung tissues from BA.1-inoculated hamsters compared with BA.2-inoculated hamsters. No aerosol transmission was observed for BA.1 or BA.2 under the experimental condition in which D614G transmitted efficiently. BA.1 and BA.2 were able to transmit among hamsters via direct contact; however, BA.1 transmitted more efficiently than BA.2 under the competitive transmission model. No recombination was detected from direct contacts exposed simultaneously to BA.1 and BA.2. CONCLUSIONS: Omicron BA.1 and BA.2 demonstrated attenuated pathogenicity and reduced transmission potential in hamsters compared with early SARS-CoV-2 strains.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Humanos , Mesocricetus , SARS-CoV-2/genética , Virulência
6.
Emerg Infect Dis ; 29(6): 1210-1214, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37095078

RESUMO

Human infection with avian influenza A(H3N8) virus is uncommon but can lead to acute respiratory distress syndrome. In explant cultures of the human bronchus and lung, novel H3N8 virus showed limited replication efficiency in bronchial and lung tissue but had a higher replication than avian H3N8 virus in lung tissue.


Assuntos
Vírus da Influenza A Subtipo H3N8 , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Humanos , Pulmão/diagnóstico por imagem , Brônquios , Replicação Viral
7.
Vet Pathol ; 59(4): 639-647, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34467820

RESUMO

Several animal models have been developed to study the pathophysiology of SARS-CoV-2 infection and to evaluate vaccines and therapeutic agents for this emerging disease. Similar to infection with SARS-CoV-1, infection of Syrian hamsters with SARS-CoV-2 results in moderate respiratory disease involving the airways and lung parenchyma but does not lead to increased mortality. Using a combination of immunohistochemistry and transmission electron microscopy, we showed that the epithelium of the conducting airways of hamsters was the primary target for viral infection within the first 5 days of infection, with little evidence of productive infection of pneumocytes. At 6 days postinfection, antigen was cleared but parenchymal damage persisted, and the major pathological changes resolved by day 14. These findings are similar to those previously reported for hamsters with SARS-CoV-1 infection. In contrast, infection of K18-hACE2 transgenic mice resulted in pneumocyte damage, with viral particles and replication complexes in both type I and type II pneumocytes together with the presence of convoluted or cubic membranes; however, there was no evidence of virus replication in the conducting airways. The Syrian hamster is a useful model for the study of SARS-CoV-2 transmission and vaccination strategies, whereas infection of the K18-hCE2 transgenic mouse results in lethal disease with fatal neuroinvasion but with sparing of conducting airways.


Assuntos
COVID-19 , Sistema Respiratório , Tropismo Viral , Enzima de Conversão de Angiotensina 2 , Animais , COVID-19/virologia , Cricetinae , Modelos Animais de Doenças , Pulmão/patologia , Mesocricetus , Camundongos , Camundongos Transgênicos , Sistema Respiratório/virologia , SARS-CoV-2/genética
8.
J Infect Dis ; 224(5): 821-830, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33395484

RESUMO

BACKGROUND: Human spillovers of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to dogs and the emergence of a highly contagious avian-origin H3N2 canine influenza virus have raised concerns on the role of dogs in the spread of SARS-CoV-2 and their susceptibility to existing human and avian influenza viruses, which might result in further reassortment. METHODS: We systematically studied the replication kinetics of SARS-CoV-2, SARS-CoV, influenza A viruses of H1, H3, H5, H7, and H9 subtypes, and influenza B viruses of Yamagata-like and Victoria-like lineages in ex vivo canine nasal cavity, soft palate, trachea, and lung tissue explant cultures and examined ACE2 and sialic acid (SA) receptor distribution in these tissues. RESULTS: There was limited productive replication of SARS-CoV-2 in canine nasal cavity and SARS-CoV in canine nasal cavity, soft palate, and lung, with unexpectedly high ACE2 levels in canine nasal cavity and soft palate. Canine tissues were susceptible to a wide range of human and avian influenza viruses, which matched with the abundance of both human and avian SA receptors. CONCLUSIONS: Existence of suitable receptors and tropism for the same tissue foster virus adaptation and reassortment. Continuous surveillance in dog populations should be conducted given the many chances for spillover during outbreaks.


Assuntos
COVID-19/virologia , Vírus da Influenza A/fisiologia , Pulmão/virologia , Cavidade Nasal/virologia , SARS-CoV-2/fisiologia , Traqueia/virologia , Tropismo Viral/fisiologia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/metabolismo , Cães , Humanos , Influenza Humana/metabolismo , Influenza Humana/virologia , Pulmão/metabolismo , Cavidade Nasal/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Traqueia/metabolismo
9.
Emerg Infect Dis ; 27(5): 1492-1495, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33900193

RESUMO

We describe an introduction of clade GH severe acute respiratory syndrome coronavirus 2 causing a fourth wave of coronavirus disease in Hong Kong. The virus has an ORF3a-Q57H mutation, causing truncation of ORF3b. This virus evades induction of cytokine, chemokine, and interferon-stimulated gene expression in primary human respiratory cells.


Assuntos
COVID-19 , Epidemias , China , Hong Kong/epidemiologia , Humanos , SARS-CoV-2
10.
Emerg Infect Dis ; 27(10): 2619-2627, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34545790

RESUMO

The numerous global outbreaks and continuous reassortments of highly pathogenic avian influenza (HPAI) A(H5N6/H5N8) clade 2.3.4.4 viruses in birds pose a major risk to the public health. We investigated the tropism and innate host responses of 5 recent HPAI A(H5N6/H5N8) avian isolates of clades 2.3.4.4b, e, and h in human airway organoids and primary human alveolar epithelial cells. The HPAI A(H5N6/H5N8) avian isolates replicated productively but with lower competence than the influenza A(H1N1)pdm09, HPAI A(H5N1), and HPAI A(H5N6) isolates from humans in both or either models. They showed differential cellular tropism in human airway organoids; some infected all 4 major epithelial cell types: ciliated cells, club cells, goblet cells, and basal cells. Our results suggest zoonotic potential but low transmissibility of the HPAI A(H5N6/H5N8) avian isolates among humans. These viruses induced low levels of proinflammatory cytokines/chemokines, which are unlikely to contribute to the pathogenesis of severe disease.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H5N8 , Influenza Aviária , Influenza Humana , Animais , Aves , Humanos , Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária/epidemiologia , Medição de Risco
11.
Proc Natl Acad Sci U S A ; 115(12): 3144-3149, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29507189

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) causes a zoonotic respiratory disease of global public health concern, and dromedary camels are the only proven source of zoonotic infection. Although MERS-CoV infection is ubiquitous in dromedaries across Africa as well as in the Arabian Peninsula, zoonotic disease appears confined to the Arabian Peninsula. MERS-CoVs from Africa have hitherto been poorly studied. We genetically and phenotypically characterized MERS-CoV from dromedaries sampled in Morocco, Burkina Faso, Nigeria, and Ethiopia. Viruses from Africa (clade C) are phylogenetically distinct from contemporary viruses from the Arabian Peninsula (clades A and B) but remain antigenically similar in microneutralization tests. Viruses from West (Nigeria, Burkina Faso) and North (Morocco) Africa form a subclade, C1, that shares clade-defining genetic signatures including deletions in the accessory gene ORF4b Compared with human and camel MERS-CoV from Saudi Arabia, virus isolates from Burkina Faso (BF785) and Nigeria (Nig1657) had lower virus replication competence in Calu-3 cells and in ex vivo cultures of human bronchus and lung. BF785 replicated to lower titer in lungs of human DPP4-transduced mice. A reverse genetics-derived recombinant MERS-CoV (EMC) lacking ORF4b elicited higher type I and III IFN responses than the isogenic EMC virus in Calu-3 cells. However, ORF4b deletions may not be the major determinant of the reduced replication competence of BF785 and Nig1657. Genetic and phenotypic differences in West African viruses may be relevant to zoonotic potential. There is an urgent need for studies of MERS-CoV at the animal-human interface.


Assuntos
Camelus/virologia , Variação Genética , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , África , Animais , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Feminino , Humanos , Pulmão/virologia , Camundongos Endogâmicos C57BL , Filogenia , Replicação Viral , Zoonoses/virologia
13.
Respir Res ; 21(1): 160, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576265

RESUMO

BACKGROUND: Neutrophil is of the most abundant number in human immune system. During acute influenza virus infection, neutrophils are already active in the early phase of inflammation - a time in which clinical biopsy or autopsy material is not readily available. However, the role of neutrophil in virus infection is not well understood. Here, we studied the role of neutrophil in host defense during influenza A virus infection, specifically assessing if it contributes to the differential pathogenesis in H5N1 disease. METHODS: Neutrophils were freshly isolated from healthy volunteers and subjected to direct influenza H1N1 and H5N1 virus infection in vitro. The ability of the naïve neutrophils to infiltrate from the basolateral to the apical phase of the influenza virus infected alveolar epithelium was assessed. The viral replication, innate immune responses and Neutrophil extracellular trap (NET) formation of neutrophils upon influenza virus infection were evaluated. RESULTS: Our results demonstrated that influenza virus infected alveolar epithelium allowed neutrophil transmigration. Significantly more neutrophils migrated across the H5N1 influenza virus infected the epithelium than the counterpart infected by the seasonal influenza H1N1 virus infected. Neutrophils were equally susceptible to H5N1 and H1N1 virus infection with similar viral gene transcription. Productive replication was observed in H5N1 infected neutrophils. H5N1 induced higher cytokine and chemokine gene transcription than H1N1 infected neutrophils, including TNF-α, IFN-ß, CXCL10, MIP-1α and IL-8. This inferred a more intense inflammatory response posed by H5N1 than H1N1 virus. Strikingly, NADPH oxidase-independent NET formation was only observed in H1N1 infected neutrophils at 6 hpi while no NET formation was observed upon H5N1 infection. CONCLUSION: Our data is the first to demonstrate that NET formation is abrogated in H5N1 influenza virus infection and might contribute to the severity of H5N1 disease.


Assuntos
DNA/imunologia , Armadilhas Extracelulares/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Neutrófilos/imunologia , Adolescente , Adulto , Animais , Células Cultivadas , Criança , Pré-Escolar , Cães , Armadilhas Extracelulares/virologia , Feminino , Humanos , Imunidade Celular/imunologia , Células Madin Darby de Rim Canino , Masculino , Neutrófilos/patologia , Neutrófilos/virologia , Mucosa Respiratória/citologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/virologia
14.
J Infect Dis ; 219(2): 186-196, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30085072

RESUMO

Background: Highly pathogenic avian influenza viruses can cause severe forms of acute lung injury (ALI) in humans, where pulmonary flooding leads to respiratory failure. The therapeutic benefits of bone marrow mesenchymal stromal cells (MSCs) have been demonstrated in a model of ALI due to influenza A(H5N1) virus. However, clinical translation is impractical and limited by a decline in efficacy as the age of the donor increases. Umbilical cord MSCs (UC-MSCs) are easier to obtain by comparison, and their primitive source may offer more-potent therapeutic effects. Methods: Here we investigate the therapeutic efficacy of UC-MSCs on the mechanisms of pulmonary edema formation and alveolar fluid clearance and protein permeability of A(H5N1)-infected human alveolar epithelial cells. UC-MSCs were also tested in a mouse model of influenza ALI. Results: We found that UC-MSCs were effective in restoring impaired alveolar fluid clearance and protein permeability of A(H5N1)-infected human alveolar epithelial cells. UC-MSCs consistently outperformed bone marrow MSCs, partly because of greater growth factor secretion of angiopoietin 1 and hepatocyte growth factor. Conditioned UC-MSC medium and UC-MSC exosomes were also able to recapitulate these effects. However, UC-MSCs only slightly improved survival of A(H5N1)-infected mice. Conclusions: Our results suggest that UC-MSCs are effective in restoring alveolar fluid clearance and protein permeability in A(H5N1)-associated ALI and confer functional in addition to practical advantages over conventional bone marrow MSCs.


Assuntos
Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/prevenção & controle , Virus da Influenza A Subtipo H5N1/patogenicidade , Influenza Humana/terapia , Células-Tronco Mesenquimais/fisiologia , Cordão Umbilical , Células Epiteliais Alveolares , Angiopoietina-1/metabolismo , Animais , Líquidos Corporais/fisiologia , Medula Óssea , Modelos Animais de Doenças , Exossomos , Feminino , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Influenza Humana/complicações , Transplante de Células-Tronco Mesenquimais , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/complicações , Infecções por Orthomyxoviridae/terapia , Permeabilidade , Edema Pulmonar
15.
J Infect Dis ; 220(4): 578-588, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31001638

RESUMO

BACKGROUND: Highly pathogenic avian influenza (HPAI)-H7N9 virus arising from low pathogenic avian influenza (LPAI)-H7N9 virus with polybasic amino acid substitutions in the hemagglutinin was detected in 2017. METHODS: We compared the tropism, replication competence, and cytokine induction of HPAI-H7N9, LPAI-H7N9, and HPAI-H5N1 in ex vivo human respiratory tract explants, in vitro culture of human alveolar epithelial cells (AECs) and pulmonary microvascular endothelial cells (HMVEC-L). RESULTS: Replication competence of HPAI- and LPAI-H7N9 were comparable in ex vivo cultures of bronchus and lung. HPAI-H7N9 predominantly infected AECs, whereas limited infection was observed in bronchus. The reduced tropism of HPAI-H7N9 in bronchial epithelium may explain the lack of human-to-human transmission despite a number of mammalian adaptation markers. Apical and basolateral release of virus was observed only in HPAI-H7N9- and H5N1-infected AECs regardless of infection route. HPAI-H7N9, but not LPAI-H7N9 efficiently replicated in HMVEC-L. CONCLUSIONS: Our findings demonstrate that a HPAI-H7N9 virus efficiently replicating in ex vivo cultures of human bronchus and lung. The HPAI-H7N9 was more efficient at replicating in human AECs and HMVEC-L than LPAI-H7N9 implying that endothelial tropism may involve in pathogenesis of HPAI-H7N9 disease.


Assuntos
Subtipo H7N9 do Vírus da Influenza A/fisiologia , Influenza Humana/virologia , Sistema Respiratório/virologia , Tropismo Viral , Replicação Viral , Células Epiteliais Alveolares/imunologia , Células Epiteliais Alveolares/virologia , Brônquios/imunologia , Brônquios/virologia , Células Cultivadas , Citocinas/imunologia , Células Endoteliais/imunologia , Células Endoteliais/virologia , Humanos , Subtipo H7N9 do Vírus da Influenza A/imunologia , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Influenza Humana/imunologia , Pulmão/imunologia , Pulmão/virologia , Sistema Respiratório/imunologia , Medição de Risco
16.
Proc Natl Acad Sci U S A ; 113(13): 3621-6, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26976597

RESUMO

Influenza can cause acute lung injury. Because immune responses often play a role, antivirals may not ensure a successful outcome. To identify pathogenic mechanisms and potential adjunctive therapeutic options, we compared the extent to which avian influenza A/H5N1 virus and seasonal influenza A/H1N1 virus impair alveolar fluid clearance and protein permeability in an in vitro model of acute lung injury, defined the role of virus-induced soluble mediators in these injury effects, and demonstrated that the effects are prevented or reduced by bone marrow-derived multipotent mesenchymal stromal cells. We verified the in vivo relevance of these findings in mice experimentally infected with influenza A/H5N1. We found that, in vitro, the alveolar epithelium's protein permeability and fluid clearance were dysregulated by soluble immune mediators released upon infection with avian (A/Hong Kong/483/97, H5N1) but not seasonal (A/Hong Kong/54/98, H1N1) influenza virus. The reduced alveolar fluid transport associated with down-regulation of sodium and chloride transporters was prevented or reduced by coculture with mesenchymal stromal cells. In vivo, treatment of aged H5N1-infected mice with mesenchymal stromal cells increased their likelihood of survival. We conclude that mesenchymal stromal cells significantly reduce the impairment of alveolar fluid clearance induced by A/H5N1 infection in vitro and prevent or reduce A/H5N1-associated acute lung injury in vivo. This potential adjunctive therapy for severe influenza-induced lung disease warrants rapid clinical investigation.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Virus da Influenza A Subtipo H5N1/patogenicidade , Influenza Humana/complicações , Células-Tronco Mesenquimais/fisiologia , Infecções por Orthomyxoviridae/complicações , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/fisiopatologia , Angiotensina I/biossíntese , Animais , Líquidos Corporais/fisiologia , Técnicas de Cocultura , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Citocinas/biossíntese , Feminino , Fator 7 de Crescimento de Fibroblastos/biossíntese , Humanos , Mediadores da Inflamação/metabolismo , Transplante de Células-Tronco Mesenquimais , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/terapia , Permeabilidade , Alvéolos Pulmonares/fisiopatologia , ATPase Trocadora de Sódio-Potássio/metabolismo
17.
Eur Respir J ; 49(3)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28275173

RESUMO

Since their first isolation in 2013, influenza A/H5N6 viruses have spread amongst poultry across multiple provinces in China and to Laos, Vietnam and Myanmar. So far, there have been 14 human H5N6 infections with 10 fatalities.We investigated the tropism, replication competence and cytokine induction of one human and two avian H5N6 isolates in ex vivo and in vitro cultures derived from the human respiratory tract. Virus tropism and replication were studied in ex vivo cultures of human nasopharynx, bronchus and lung. Induction of cytokines and chemokines was measured in vitro in virus-infected primary human alveolar epithelial cells.Human H5N6 virus replicated more efficiently than highly pathogenic avian influenza (HPAI) H5N1 virus and as efficiently as H1N1pdm in ex vivo human bronchus and lung and was also able to replicate in ex vivo cultures of human nasopharynx. Avian H5N6 viruses replicated less efficiently than H1N1pdm in human bronchial tissues and to similar titres as HPAI H5N1 in the lung. While the human H5N6 virus had affinity for avian-like receptors, the two avian isolates had binding affinity for both avian- and human-like receptors. All three H5N6 viruses were less potent inducers of pro-inflammatory cytokines compared with H5N1 virus.Human H5N6 virus appears better adapted to infect the human airways than H5N1 virus and may pose a significant public health threat.


Assuntos
Vírus da Influenza A/fisiologia , Influenza Humana/imunologia , Sistema Respiratório/virologia , Tropismo Viral , Replicação Viral , Células Epiteliais Alveolares/virologia , Animais , Aves , Células Cultivadas , Quimiocinas/imunologia , Citocinas/imunologia , Humanos , Imunidade Inata , Vírus da Influenza A/patogenicidade , Influenza Aviária/imunologia , Masculino , Pessoa de Meia-Idade , Sistema Respiratório/patologia , Técnicas de Cultura de Tecidos
18.
Proc Natl Acad Sci U S A ; 111(15): 5676-81, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24706798

RESUMO

Current influenza vaccines are ineffective against novel viruses and the source or the strain of the next outbreak of influenza is unpredictable; therefore, establishing universal immunity by vaccination to limit the impact of influenza remains a high priority. To meet this challenge, a novel vaccine has been developed using the immunogenic live vaccinia virus as a vaccine vector, expressing multiple H5N1 viral proteins (HA, NA, M1, M2, and NP) together with IL-15 as a molecular adjuvant. Previously, this vaccine demonstrated robust sterile cross-clade protection in mice against H5 influenza viruses, and herein its use has been extended to mediate heterosubtypic immunity toward viruses from both group 1 and 2 HA lineages. The vaccine protected mice against lethal challenge by increasing survival and significantly reducing lung viral loads against the most recent human H7N9, seasonal H3N2, pandemic-2009 H1N1, and highly pathogenic H7N7 influenza A viruses. Influenza-specific antibodies elicited by the vaccine failed to neutralize heterologous viruses and were unable to confer protection by passive transfer. Importantly, heterologous influenza-specific CD4(+) and CD8(+) T-cell responses that were elicited by the vaccine were effectively recalled and amplified following viral challenge in the lungs and periphery. Selective depletion of T-cell subsets in the immunized mice revealed an important role for CD4(+) T cells in heterosubtypic protection, despite low sequence conservation among known MHC-II restricted epitopes across different influenza viruses. This study illustrates the potential utility of our multivalent Wyeth/IL-15/5Flu as a universal influenza vaccine with a correlate of protective immunity that is independent of neutralizing antibodies.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Vacinas contra Influenza/imunologia , Interleucina-15/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Vaccinia virus/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Feminino , Citometria de Fluxo , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza A Subtipo H7N7/imunologia , Subtipo H7N9 do Vírus da Influenza A/imunologia , Interleucina-15/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C
19.
J Virol ; 89(21): 10762-73, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26269186

RESUMO

UNLABELLED: Seasonal influenza epidemics and occasional pandemics threaten public health worldwide. New alternative strategies for generating recombinant viruses with vaccine potential are needed. Interestingly, influenza viruses circulating in different hosts have been found to have distinct codon usage patterns, which may reflect host adaptation. We therefore hypothesized that it is possible to make a human seasonal influenza virus that is specifically attenuated in human cells but not in eggs by converting its codon usage so that it is similar to that observed from avian influenza viruses. This approach might help to generate human live attenuated viruses without affecting their yield in eggs. To test this hypothesis, over 300 silent mutations were introduced into the genome of a seasonal H1N1 influenza virus. The resultant mutant was significantly attenuated in mammalian cells and mice, yet it grew well in embryonated eggs. A single dose of intranasal vaccination induced potent innate, humoral, and cellular immune responses, and the mutant could protect mice against homologous and heterologous viral challenges. The attenuated mutant could also be used as a vaccine master donor strain by introducing hemagglutinin and neuraminidase genes derived from other strains. Thus, our approach is a successful strategy to generate attenuated viruses for future application as vaccines. IMPORTANCE: Vaccination has been one of the best protective measures in combating influenza virus infection. Current licensed influenza vaccines and their production have various limitations. Our virus attenuation strategy makes use of the codon usage biases of human and avian influenza viruses to generate a human-derived influenza virus that is attenuated in mammalian hosts. This method, however, does not affect virus replication in eggs. This makes the resultant mutants highly compatible with existing egg-based vaccine production pipelines. The viral proteins generated from the codon bias mutants are identical to the wild-type viral proteins. In addition, our massive genome-wide mutational approach further minimizes the concern over reverse mutations. The potential use of this kind of codon bias mutant as a master donor strain to generate other live attenuated viruses is also demonstrated. These findings put forward a promising live attenuated influenza vaccine generation strategy to control influenza.


Assuntos
Códon/genética , Engenharia Genética/métodos , Vírus da Influenza A Subtipo H1N1/genética , Vacinas contra Influenza/biossíntese , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Animais , Cães , Ovos/virologia , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Camundongos , Mutagênese
20.
J Biol Chem ; 289(41): 28489-504, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25135641

RESUMO

The initial recognition between influenza virus and the host cell is mediated by interactions between the viral surface protein hemagglutinin and sialic acid-terminated glycoconjugates on the host cell surface. The sialic acid residues can be linked to the adjacent monosaccharide by α2-3- or α2-6-type glycosidic bonds. It is this linkage difference that primarily defines the species barrier of the influenza virus infection with α2-3 binding being associated with avian influenza viruses and α2-6 binding being associated with human strains. The ferret has been extensively used as an animal model to study the transmission of influenza. To better understand the validity of this model system, we undertook glycomic characterization of respiratory tissues of ferret, which allows a comparison of potential viral receptors to be made between humans and ferrets. To complement the structural analysis, lectin staining experiments were performed to characterize the regional distributions of glycans along the respiratory tract of ferrets. Finally, the binding between the glycans identified and the hemagglutinins of different strains of influenza viruses was assessed by glycan array experiments. Our data indicated that the respiratory tissues of ferret heterogeneously express both α2-3- and α2-6-linked sialic acids. However, the respiratory tissues of ferret also expressed the Sda epitope (NeuAcα2-3(GalNAcß1-4)Galß1-4GlcNAc) and sialylated N,N'-diacetyllactosamine (NeuAcα2-6GalNAcß1-4GlcNAc), which have not been observed in the human respiratory tract surface epithelium. The presence of the Sda epitope reduces potential binding sites for avian viruses and thus may have implications for the usefulness of the ferret in the study of influenza virus infection.


Assuntos
Glicômica , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Vírus da Influenza A/química , Polissacarídeos/química , Sistema Respiratório/química , Ácidos Siálicos/química , Animais , Sítios de Ligação , Sequência de Carboidratos , Modelos Animais de Doenças , Feminino , Furões , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Vírus da Influenza A/metabolismo , Lectinas/química , Masculino , Dados de Sequência Molecular , Infecções por Orthomyxoviridae/virologia , Ligação Proteica , Sistema Respiratório/virologia , Ácidos Siálicos/metabolismo , Especificidade da Espécie , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA