Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 283(1824)2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26842567

RESUMO

Insects are a hyper-diverse group, comprising nearly three-quarters of all named animal species on the Earth, but the environmental drivers of their richness and the roles of ecological interactions and evolutionary innovations remain unclear. Previous studies have argued that family-level insect richness increased continuously over the evolutionary history of the group, but inclusion of extant family records artificially inflated the relative richness of younger time intervals. Here we apply sampling-standardization methods to a species-level database of fossil insect occurrences, removing biases present in previous richness curves. We show that insect family-richness peaked 125 Ma and that Recent values are only 1.5-3 times as high as the Late Palaeozoic. Rarefied species-richness data also tentatively suggest little or no net increase in richness over the past 125 Myr. The Cretaceous peak in family richness was coincident with major radiations within extant groups but occurred prior to extinctions within more basal groups. Those extinctions may in part be linked to mid-Cretaceous floral turnover following the evolution of flowering plants. Negligible net richness change over the past 125 Myr implies that major radiations within extant groups were offset by reduced richness within groups that are now relict or extinct.


Assuntos
Biodiversidade , Evolução Biológica , Extinção Biológica , Insetos/fisiologia , Animais , Fósseis , Paleontologia
2.
Proc Biol Sci ; 283(1839)2016 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-27655766

RESUMO

Ectotherms have close physiological ties with the thermal environment; consequently, the impact of future climate change on their biogeographic distributions is of major interest. Here, we use the modern and deep-time fossil record of testudines (turtles, tortoises, and terrapins) to provide the first test of climate on the niche limits of both extant and extinct (Late Cretaceous, Maastrichtian) taxa. Ecological niche models are used to assess niche overlap in model projections for key testudine ecotypes and families. An ordination framework is applied to quantify metrics of niche change (stability, expansion, and unfilling) between the Maastrichtian and present day. Results indicate that niche stability over evolutionary timescales varies between testudine clades. Groups that originated in the Early Cretaceous show climatic niche stability, whereas those diversifying towards the end of the Cretaceous display larger niche expansion towards the modern. Temperature is the dominant driver of modern and past distributions, whereas precipitation is important for freshwater turtle ranges. Our findings demonstrate that testudines were able to occupy warmer climates than present day in the geological record. However, the projected rate and magnitude of future environmental change, in concert with other conservation threats, presents challenges for acclimation or adaptation.


Assuntos
Evolução Biológica , Mudança Climática , Ecossistema , Tartarugas , Animais , Fósseis
3.
Proc Biol Sci ; 281(1793)2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25165766

RESUMO

Explaining the taxonomic richness of the insects, comprising over half of all described species, is a major challenge in evolutionary biology. Previously, several evolutionary novelties (key innovations) have been posited to contribute to that richness, including the insect bauplan, wings, wing folding and complete metamorphosis, but evidence over their relative importance and modes of action is sparse and equivocal. Here, a new dataset on the first and last occurrences of fossil hexapod (insects and close relatives) families is used to show that basal families of winged insects (Palaeoptera, e.g. dragonflies) show higher origination and extinction rates in the fossil record than basal wingless groups (Apterygota, e.g. silverfish). Origination and extinction rates were maintained at levels similar to Palaeoptera in the more derived Polyneoptera (e.g. cockroaches) and Paraneoptera (e.g. true bugs), but extinction rates subsequently reduced in the very rich group of insects with complete metamorphosis (Holometabola, e.g. beetles). Holometabola show evidence of a recent slow-down in their high net diversification rate, whereas other winged taxa continue to diversify at constant but low rates. These data suggest that wings and complete metamorphosis have had the most effect on family-level insect macroevolution, and point to specific mechanisms by which they have influenced insect diversity through time.


Assuntos
Biodiversidade , Evolução Biológica , Fósseis/anatomia & histologia , Insetos/anatomia & histologia , Insetos/fisiologia , Filogenia , Animais , Insetos/crescimento & desenvolvimento , Metamorfose Biológica
4.
Curr Biol ; 33(1): 109-121.e3, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36549298

RESUMO

Past responses to environmental change provide vital baseline data for estimating the potential resilience of extant taxa to future change. Here, we investigate the latitudinal range contraction that terrestrial and freshwater turtles (Testudinata) experienced from the Late Cretaceous to the Paleogene (100.5-23.03 mya) in response to major climatic changes. We apply ecological niche modeling (ENM) to reconstruct turtle niches, using ancient and modern distribution data, paleogeographic reconstructions, and the HadCM3L climate model to quantify their range shifts in the Cretaceous and late Eocene. We then use the insights provided by these models to infer their probable ecological responses to future climate scenarios at different representative concentration pathways (RCPs 4.5 and 8.5 for 2100), which project globally increased temperatures and spreading arid biomes at lower to mid-latitudes. We show that turtle ranges are predicted to expand poleward in the Northern Hemisphere, with decreased habitat suitability at lower latitudes, inverting a trend of latitudinal range contraction that has been prevalent since the Eocene. Trionychids and freshwater turtles can more easily track their niches than Testudinidae and other terrestrial groups. However, habitat destruction and fragmentation at higher latitudes will probably reduce the capability of turtles and tortoises to cope with future climate changes.


Assuntos
Tartarugas , Animais , Tartarugas/fisiologia , Mudança Climática , Ecossistema , Água Doce , Probabilidade
5.
BMC Evol Biol ; 11: 252, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21917167

RESUMO

BACKGROUND: The fossil record has suggested that clade growth may differ in marine and terrestrial taxa, supporting equilibrial models in the former and expansionist models in the latter. However, incomplete sampling may bias findings based on fossil data alone. To attempt to correct for such bias, we assemble phylogenetic supertrees on one of the oldest clades of insects, the Odonatoidea (dragonflies, damselflies and their extinct relatives), using MRP and MRC. We use the trees to determine when, and in what clades, changes in taxonomic richness have occurred. We then test whether equilibrial or expansionist models are supported by fossil data alone, and whether findings differ when phylogenetic information is used to infer gaps in the fossil record. RESULTS: There is broad agreement in family-level relationships between both supertrees, though with some uncertainty along the backbone of the tree regarding dragonflies (Anisoptera). "Anisozygoptera" are shown to be paraphyletic when fossil information is taken into account. In both trees, decreases in net diversification are associated with species-poor extant families (Neopetaliidae, Hemiphlebiidae), and an upshift is associated with Calopterygidae + Polythoridae. When ghost ranges are inferred from the fossil record, many families are shown to have much earlier origination dates. In a phylogenetic context, the number of family-level lineages is shown to be up to twice as high as the fossil record alone suggests through the Cretaceous and Cenozoic, and a logistic increase in richness is detected in contrast to an exponential increase indicated by fossils alone. CONCLUSIONS: Our analysis supports the notion that taxa, which appear to have diversified exponentially using fossil data, may in fact have diversified more logistically. This in turn suggests that one of the major apparent differences between the marine and terrestrial fossil record may simply be an artifact of incomplete sampling. Our results also support previous notions that adult colouration plays an important role in odonate radiation, and that Anisozygoptera should be grouped in a single inclusive taxon with Anisoptera, separate from Zygoptera.


Assuntos
Biologia Computacional/métodos , Ecossistema , Fósseis , Insetos , Modelos Biológicos , Filogenia , Animais , Viés de Seleção
6.
R Soc Open Sci ; 3(11): 160581, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28018649

RESUMO

The latitudinal biodiversity gradient (LBG)-the pattern of increasing taxonomic richness with decreasing latitude-is prevalent in the structure of the modern biota. However, some freshwater taxa show peak richness at mid-latitudes; for example, extant Testudines (turtles, terrapins and tortoises) exhibit their greatest diversity at 25° N, a pattern sometimes attributed to recent bursts of climatically mediated species diversification. Here, we test whether this pattern also characterizes the Mesozoic distribution of turtles, to determine whether it was established during either their initial diversification or as a more modern phenomenon. Using global occurrence data for non-marine testudinate genera, we find that subsampled richness peaks at palaeolatitudes of 15-30° N in the Jurassic, 30-45° N through the Cretaceous to the Campanian, and from 30° to 60° N in the Maastrichtian. The absence of a significant diversity peak in southern latitudes is consistent with results from climatic models and turtle niche modelling that demonstrate a dearth of suitable turtle habitat in Gondwana during the Jurassic and Late Cretaceous. Our analyses confirm that the modern testudinate LBG has a deep-time origin and further demonstrate that LBGs are not always expressed as a smooth, equator-to-pole distribution.

7.
PLoS One ; 10(7): e0128554, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26176667

RESUMO

The first and last occurrences of hexapod families in the fossil record are compiled from publications up to end-2009. The major features of these data are compared with those of previous datasets (1993 and 1994). About a third of families (>400) are new to the fossil record since 1994, over half of the earlier, existing families have experienced changes in their known stratigraphic range and only about ten percent have unchanged ranges. Despite these significant additions to knowledge, the broad pattern of described richness through time remains similar, with described richness increasing steadily through geological history and a shift in dominant taxa, from Palaeoptera and Polyneoptera to Paraneoptera and Holometabola, after the Palaeozoic. However, after detrending, described richness is not well correlated with the earlier datasets, indicating significant changes in shorter-term patterns. There is reduced Palaeozoic richness, peaking at a different time, and a less pronounced Permian decline. A pronounced Triassic peak and decline is shown, and the plateau from the mid Early Cretaceous to the end of the period remains, albeit at substantially higher richness compared to earlier datasets. Origination and extinction rates are broadly similar to before, with a broad decline in both through time but episodic peaks, including end-Permian turnover. Origination more consistently exceeds extinction compared to previous datasets and exceptions are mainly in the Palaeozoic. These changes suggest that some inferences about causal mechanisms in insect macroevolution are likely to differ as well.


Assuntos
Fósseis , Insetos , Animais , Biodiversidade , Extinção Biológica
8.
Nat Commun ; 6: 7848, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26234913

RESUMO

Chelonians are ectothermic, with an extensive fossil record preserved in diverse palaeoenvironmental settings: consequently, they represent excellent models for investigating organismal response to long-term environmental change. We present the first Mesozoic chelonian taxic richness curve, subsampled to remove geological/collection biases, and demonstrate that their palaeolatitudinal distributions were climate mediated. At the Jurassic/Cretaceous transition, marine taxa exhibit minimal diversity change, whereas non-marine diversity increases. A Late Cretaceous peak in 'global' non-marine subsampled richness coincides with high palaeolatitude occurrences and the Cretaceous thermal maximum (CTM): however, this peak also records increased geographic sampling and is not recovered in continental-scale diversity patterns. Nevertheless, a model-detrended richness series (insensitive to geographic sampling) also recovers a Late Cretaceous peak, suggesting genuine geographic range expansion among non-marine turtles during the CTM. Increased Late Cretaceous diversity derives from intensive North American sampling, but subsampling indicates that Early Cretaceous European/Asian diversity may have exceeded that of Late Cretaceous North America.


Assuntos
Biodiversidade , Evolução Biológica , Mudança Climática , Fósseis , Tartarugas , Animais , Ásia , Europa (Continente) , América do Norte
9.
PLoS One ; 9(9): e109085, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25275450

RESUMO

Insects and their six-legged relatives (Hexapoda) comprise more than half of all described species and dominate terrestrial and freshwater ecosystems. Understanding the macroevolutionary processes generating this richness requires a historical perspective, but the fossil record of hexapods is patchy and incomplete. Dated molecular phylogenies provide an alternative perspective on divergence times and have been combined with birth-death models to infer patterns of diversification across a range of taxonomic groups. Here we generate a dated phylogeny of hexapod families, based on previously published sequence data and literature derived constraints, in order to identify the broad pattern of macroevolutionary changes responsible for the composition of the extant hexapod fauna. The most prominent increase in diversification identified is associated with the origin of complete metamorphosis, confirming this as a key innovation in promoting insect diversity. Subsequent reductions are recovered for several groups previously identified as having a higher fossil diversity during the Mesozoic. In addition, a number of recently derived taxa are found to have radiated following the development of flowering plant (angiosperm) floras during the mid-Cretaceous. These results reveal that the composition of the modern hexapod fauna is a product of a key developmental innovation, combined with multiple and varied evolutionary responses to environmental changes from the mid Cretaceous floral transition onward.


Assuntos
Biodiversidade , Extinção Biológica , Insetos/crescimento & desenvolvimento , Metamorfose Biológica , Filogenia , Animais , Funções Verossimilhança , Modelos Biológicos , Especificidade da Espécie , Fatores de Tempo
10.
Tech Vasc Interv Radiol ; 16(2): 152-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23830672

RESUMO

Since the conception of balloon-occluded retrograde transvenous obliteration (BRTO) of gastric varices 25 years ago, the placement of an indwelling balloon for hours has been central to the BRTO procedure. Numerous variables and variations of the BRTO procedure have been described, including methods to reduce sclerosant, combining percutaneous transhepatic obliteration, varying sclerosant, and using multiple sclerosants within the same procedure. However, the consistent feature of BRTO has always remained the indwelling balloon. Placing an indwelling balloon over hours for the BRTO procedure is a logistical burden that taxes the interventional radiology team and hospital resources. Substituting the balloon with hardware (coils or Amplatzer vascular plugs [AVPs] or both) is technically feasible and its risks most likely correlate with gastrorenal shunt (GRS) size. The current authors use packed 0.018- or 0.035-in coils or both for small gastric variceal systems (GRS size A and B) and AVPs for GRS sizes up to size E (from size A-E). The current authors recommend an indwelling balloon (no hardware substitute) for very large gastric variceal system (GRS size F). Substituting the indwelling balloon for hardware in size F and potentially size E GRS can also be risky. The current article describes the techniques of placing up to 16-mm AVPs through balloon occlusion guide catheters and then deflating the balloon once it has been substituted with the AVPs. In addition, 22-mm AVPs can be placed through sheaths once the balloon occlusion catheters are removed to further augment the 16-mm Amplatzer occlusion. To date, there are no studies describing, let alone evaluating, the clinical feasibility of performing BRTO without indwelling balloons. The described techniques have been successfully performed by the current authors. However, the long-term safety and effectiveness of these techniques is yet to be determined.


Assuntos
Oclusão com Balão/instrumentação , Cateteres de Demora , Varizes Esofágicas e Gástricas/terapia , Hemorragia Gastrointestinal/terapia , Dispositivos de Acesso Vascular , Oclusão com Balão/efeitos adversos , Oclusão com Balão/métodos , Circulação Colateral , Embolização Terapêutica , Desenho de Equipamento , Varizes Esofágicas e Gástricas/diagnóstico , Varizes Esofágicas e Gástricas/etiologia , Varizes Esofágicas e Gástricas/fisiopatologia , Hemorragia Gastrointestinal/diagnóstico , Hemorragia Gastrointestinal/etiologia , Hemorragia Gastrointestinal/fisiopatologia , Hemodinâmica , Humanos , Hipertensão Portal/complicações , Hipertensão Portal/fisiopatologia , Flebografia , Radiografia Intervencionista , Fluxo Sanguíneo Regional , Escleroterapia , Circulação Esplâncnica , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA