Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Cell ; 184(14): 3643-3659.e23, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34166613

RESUMO

Vesicle-inducing protein in plastids 1 (VIPP1) is essential for the biogenesis and maintenance of thylakoid membranes, which transform light into life. However, it is unknown how VIPP1 performs its vital membrane-remodeling functions. Here, we use cryo-electron microscopy to determine structures of cyanobacterial VIPP1 rings, revealing how VIPP1 monomers flex and interweave to form basket-like assemblies of different symmetries. Three VIPP1 monomers together coordinate a non-canonical nucleotide binding pocket on one end of the ring. Inside the ring's lumen, amphipathic helices from each monomer align to form large hydrophobic columns, enabling VIPP1 to bind and curve membranes. In vivo mutations in these hydrophobic surfaces cause extreme thylakoid swelling under high light, indicating an essential role of VIPP1 lipid binding in resisting stress-induced damage. Using cryo-correlative light and electron microscopy (cryo-CLEM), we observe oligomeric VIPP1 coats encapsulating membrane tubules within the Chlamydomonas chloroplast. Our work provides a structural foundation for understanding how VIPP1 directs thylakoid biogenesis and maintenance.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Chlamydomonas/metabolismo , Multimerização Proteica , Synechocystis/metabolismo , Tilacoides/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/ultraestrutura , Sítios de Ligação , Membrana Celular/metabolismo , Chlamydomonas/ultraestrutura , Microscopia Crioeletrônica , Proteínas de Fluorescência Verde/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Luz , Lipídeos/química , Modelos Moleculares , Nucleotídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estresse Fisiológico/efeitos da radiação , Synechocystis/ultraestrutura , Tilacoides/ultraestrutura
2.
Plant Cell ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567528

RESUMO

Cyanobacteria and chloroplasts of algae and plants harbor specialized thylakoid membranes that convert sunlight into chemical energy. These membranes house photosystems II and I, the vital protein-pigment complexes that drive oxygenic photosynthesis. In the course of their evolution, thylakoid membranes have diversified in structure. However, the core machinery for photosynthetic electron transport remained largely unchanged, with adaptations occurring primarily in the light-harvesting antenna systems. Whereas thylakoid membranes in cyanobacteria are relatively simple they become more complex in algae and plants. The chloroplasts of vascular plants contain intricate networks of stacked grana and unstacked stroma thylakoids. This review provides an in-depth view of thylakoid membrane architectures in phototrophs, and the determinants that shape their forms, as well as presenting recent insights into the spatial organization of their biogenesis and maintenance. Its overall goal is to define the underlying principles that have guided the evolution of these bioenergetic membranes.

3.
Plant Cell ; 35(6): 1727-1751, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-36807982

RESUMO

Plant organellar RNA metabolism is run by a multitude of nucleus-encoded RNA-binding proteins (RBPs) that control RNA stability, processing, and degradation. In chloroplasts and mitochondria, these post-transcriptional processes are vital for the production of a small number of essential components of the photosynthetic and respiratory machinery-and consequently for organellar biogenesis and plant survival. Many organellar RBPs have been functionally assigned to individual steps in RNA maturation, often specific to selected transcripts. While the catalog of factors identified is ever-growing, our knowledge of how they achieve their functions mechanistically is far from complete. This review summarizes the current knowledge of plant organellar RNA metabolism taking an RBP-centric approach and focusing on mechanistic aspects of RBP functions and the kinetics of the processes they are involved in.


Assuntos
Mitocôndrias , RNA , RNA/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Plantas/genética , Plantas/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Núcleo Celular/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(33): e2306338120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549282

RESUMO

NADPH-dependent thioredoxin reductase C (NTRC) is a chloroplast redox regulator in algae and plants. Here, we used site-specific mutation analyses of the thioredoxin domain active site of NTRC in the green alga Chlamydomonas reinhardtii to show that NTRC mediates cold tolerance in a redox-dependent manner. By means of coimmunoprecipitation and mass spectrometry, a redox- and cold-dependent binding of the Calvin-Benson Cycle Protein 12 (CP12) to NTRC was identified. NTRC was subsequently demonstrated to directly reduce CP12 of C. reinhardtii as well as that of the vascular plant Arabidopsis thaliana in vitro. As a scaffold protein, CP12 joins the Calvin-Benson cycle enzymes phosphoribulokinase (PRK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to form an autoinhibitory supracomplex. Using size-exclusion chromatography, NTRC from both organisms was shown to control the integrity of this complex in vitro and thereby PRK and GAPDH activities in the cold. Thus, NTRC apparently reduces CP12, hence triggering the dissociation of the PRK/CP12/GAPDH complex in the cold. Like the ntrc::aphVIII mutant, CRISPR-based cp12::emx1 mutants also exhibited a redox-dependent cold phenotype. In addition, CP12 deletion resulted in robust decreases in both PRK and GAPDH protein levels implying a protein protection effect of CP12. Both CP12 functions are critical for preparing a repertoire of enzymes for rapid activation in response to environmental changes. This provides a crucial mechanism for cold acclimation.


Assuntos
Chlamydomonas reinhardtii , Fotossíntese , Tiorredoxina Dissulfeto Redutase , Aclimatação , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Oxirredução , Fotossíntese/fisiologia , Tiorredoxina Dissulfeto Redutase/metabolismo
5.
Plant Cell ; 34(1): 655-678, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34665262

RESUMO

Thylakoids are the highly specialized internal membrane systems that harbor the photosynthetic electron transport machinery in cyanobacteria and in chloroplasts. In Synechocystis sp. PCC 6803, thylakoid membranes (TMs) are arranged in peripheral sheets that occasionally converge on the plasma membrane (PM) to form thylakoid convergence membranes (TCMs). TCMs connect several thylakoid sheets and form local contact sites called thylapses between the two membrane systems, at which the early steps of photosystem II (PSII) assembly occur. The protein CurT is one of the main drivers of TCM formation known so far. Here, we identify, by whole-genome sequencing of a curT- suppressor strain, the protein anchor of convergence membranes (AncM) as a factor required for the attachment of thylakoids to the PM at thylapses. An ancM- mutant is shown to have a photosynthetic phenotype characterized by reductions in oxygen-evolution rate, PSII accumulation, and PS assembly. Moreover, the ancM- strain exhibits an altered thylakoid ultrastructure with additional sheets and TCMs detached from the PM. By combining biochemical studies with fluorescence and correlative light-electron microscopy-based approaches, we show that AncM is an integral membrane protein located in biogenic TCMs that form thylapses. These data suggest an antagonistic function of AncM and CurT in shaping TM ultrastructure.


Assuntos
Proteínas de Bactérias/genética , Membrana Celular/fisiologia , Synechocystis/fisiologia , Tilacoides/fisiologia , Proteínas de Bactérias/metabolismo , Synechocystis/genética
6.
Physiol Plant ; 176(4): e14417, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38945684

RESUMO

Chlorophyll (Chl) plays a crucial role in photosynthesis, functioning as a photosensitizer. As an integral component of this process, energy absorbed by this pigment is partly emitted as red fluorescence. This signal can be readily imaged by fluorescence microscopy and provides a visualization of photosynthetic activity. However, due to limited resolution, signals cannot be assigned to specific subcellular/organellar membrane structures. By correlating fluorescence micrographs with transmission electron microscopy, researchers can identify sub-cellular compartments and membranes, enabling the monitoring of Chl distribution within thylakoid membrane substructures in cyanobacteria, algae, and higher plant single cells. Here, we describe a simple and effective protocol for correlative light-electron microscopy (CLEM) based on the autofluorescence of Chl and demonstrate its application to selected photosynthetic model organisms. Our findings illustrate the potential of this technique to identify areas of high Chl concentration and photochemical activity, such as grana regions in vascular plants, by mapping stacked thylakoids.


Assuntos
Clorofila , Tilacoides , Tilacoides/metabolismo , Tilacoides/ultraestrutura , Clorofila/metabolismo , Fotossíntese/fisiologia , Microscopia de Fluorescência/métodos , Microscopia Eletrônica de Transmissão/métodos
7.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612734

RESUMO

Being the green gold of the future, cyanobacteria have recently attracted considerable interest worldwide. This study investigates the adaptability and biocompatibility of the cyanobacterial strain Synechococcus sp. PCC 7002 with human dermal cells, focusing on its potential application in biomedical contexts. First, we investigated the adaptability of Synechococcus PCC 7002 bacteria to human cell culture conditions. Next, we evaluated the biocompatibility of cyanobacteria with common dermal cells, like 3T3 fibroblasts and HaCaT keratinocytes. Therefore, cells were directly and indirectly cocultured with the corresponding cells, and we measured metabolic activity (AlamarBlue assay) and proliferation (cell count and PicoGreen assay). The lactate dehydrogenase (LDH) assay was performed to determine the cytotoxic effect of cyanobacteria and their nutrition medium on human dermal cells. The cyanobacteria exhibited exponential growth under conventional human cell culture conditions, with the temperature and medium composition not affecting their viability. In addition, the effect of illumination on the proliferation capacity was investigated, showing a significant impact of light exposure on bacterial growth. The measured oxygen production under hypoxic conditions demonstrated a sufficient oxygen supply for further tissue engineering approaches depending on the number of bacteria. There were no significant adverse effects on human cell viability and growth under coculture conditions, whereas the LDH assay assessed signs of cytotoxicity regarding 3T3 fibroblasts after 2 days of coculturing. These negative effects were dismissed after 4 days. The findings highlight the potential of Synechococcus sp. PCC 7002 for integration into biomedical approaches. We found no cytotoxicity of cyanobacteria on 3T3 fibroblasts and HaCaT keratinocytes, thus paving the way for further in vivo studies to assess long-term effects and systemic reactions.


Assuntos
Synechococcus , Humanos , Bioensaio , Contagem de Células , Técnicas de Cultura de Células , Oxigênio
8.
Plant J ; 111(6): 1780-1800, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35899410

RESUMO

The dihydrolipoamide acetyltransferase subunit DLA2 of the chloroplast pyruvate dehydrogenase complex (cpPDC) in the green alga Chlamydomonas reinhardtii has previously been shown to possess moonlighting activity in chloroplast gene expression. Under mixotrophic growth conditions, DLA2 forms part of a ribonucleoprotein particle (RNP) with the psbA mRNA that encodes the D1 protein of the photosystem II (PSII) reaction center. Here, we report on the characterization of the molecular switch that regulates shuttling of DLA2 between its functions in carbon metabolism and D1 synthesis. Determination of RNA-binding affinities by microscale thermophoresis demonstrated that the E3-binding domain (E3BD) of DLA2 mediates psbA-specific RNA recognition. Analyses of cpPDC formation and activity, as well as RNP complex formation, showed that acetylation of a single lysine residue (K197) in E3BD induces the release of DLA2 from the cpPDC, and its functional shift towards RNA binding. Moreover, Förster resonance energy transfer microscopy revealed that psbA mRNA/DLA2 complexes localize around the chloroplast's pyrenoid. Pulse labeling and D1 re-accumulation after induced PSII degradation strongly suggest that DLA2 is important for D1 synthesis during de novo PSII biogenesis.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Acetilação , Carbono/metabolismo , Chlamydomonas/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/metabolismo , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/metabolismo , Lisina/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonucleoproteínas/metabolismo
9.
Plant J ; 109(1): 261-277, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34709689

RESUMO

The green alga Chlamydomonas reinhardtii is one of the most studied microorganisms in photosynthesis research and for biofuel production. A detailed understanding of the dynamic regulation of its carbon metabolism is therefore crucial for metabolic engineering. Post-translational modifications can act as molecular switches for the control of protein function. Acetylation of the ɛ-amino group of lysine residues is a dynamic modification on proteins across organisms from all kingdoms. Here, we performed mass spectrometry-based profiling of proteome and lysine acetylome dynamics in Chlamydomonas under varying growth conditions. Chlamydomonas liquid cultures were transferred from mixotrophic (light and acetate as carbon source) to heterotrophic (dark and acetate) or photoautotrophic (light only) growth conditions for 30 h before harvest. In total, 5863 protein groups and 1376 lysine acetylation sites were identified with a false discovery rate of <1%. As a major result of this study, our data show that dynamic changes in the abundance of lysine acetylation on various enzymes involved in photosynthesis, fatty acid metabolism, and the glyoxylate cycle are dependent on acetate and light. Exemplary determination of acetylation site stoichiometries revealed particularly high occupancy levels on K175 of the large subunit of RuBisCO and K99 and K340 of peroxisomal citrate synthase under heterotrophic conditions. The lysine acetylation stoichiometries correlated with increased activities of cellular citrate synthase and the known inactivation of the Calvin-Benson cycle under heterotrophic conditions. In conclusion, the newly identified dynamic lysine acetylation sites may be of great value for genetic engineering of metabolic pathways in Chlamydomonas.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Fotossíntese , Proteínas de Plantas/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma , Acetatos/metabolismo , Acetilação , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/efeitos da radiação , Luz , Lisina/metabolismo , Espectrometria de Massas , Redes e Vias Metabólicas , Proteínas de Plantas/genética , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo
10.
Nucleic Acids Res ; 49(1): 400-415, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33330923

RESUMO

In plant cells, chloroplast gene expression is predominantly controlled through post-transcriptional regulation. Such fine-tuning is vital for precisely orchestrating protein complex assembly as for the photosynthesis machinery and for quickly responding to environmental changes. While regulation of chloroplast protein synthesis is of central importance, little is known about the degree and nature of the regulatory network, mainly due to challenges associated with the specific isolation of transient ribosome interactors. Here, we established a ribosome affinity purification method, which enabled us to broadly uncover putative ribosome-associated proteins in chloroplasts. Endogenously tagging of a protein of the large or small subunit revealed not only interactors of the holo complex, but also preferential interactors of the two subunits. This includes known canonical regulatory proteins as well as several new proteins belonging to the categories of protein and RNA regulation, photosystem biogenesis, redox control and metabolism. The sensitivity of the here applied screen was validated for various transiently interacting proteins. We further provided evidence for the existence of a ribosome-associated Nα-acetyltransferase in chloroplasts and its ability to acetylate substrate proteins at their N-terminus. The broad set of ribosome interactors underscores the potential to regulate chloroplast gene expression on the level of protein synthesis.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Ribossomos/metabolismo , Espectrometria de Massas em Tandem/métodos , Acetilação , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Fracionamento Celular/métodos , Chlamydomonas reinhardtii/genética , Regulação da Expressão Gênica de Plantas , Separação Imunomagnética , Espectrometria de Massas , Modelos Moleculares , Acetiltransferases N-Terminal/isolamento & purificação , Acetiltransferases N-Terminal/metabolismo , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Processamento de Proteína Pós-Traducional , Subunidades Ribossômicas Maiores/metabolismo , Subunidades Ribossômicas Menores/metabolismo
11.
Plant J ; 106(1): 23-40, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33368770

RESUMO

Acclimation is the capacity to adapt to environmental changes within the lifetime of an individual. This ability allows plants to cope with the continuous variation in ambient conditions to which they are exposed as sessile organisms. Because environmental changes and extremes are becoming even more pronounced due to the current period of climate change, enhancing the efficacy of plant acclimation is a promising strategy for mitigating the consequences of global warming on crop yields. At the cellular level, the chloroplast plays a central role in many acclimation responses, acting both as a sensor of environmental change and as a target of cellular acclimation responses. In this Perspective article, we outline the activities of the Green Hub consortium funded by the German Science Foundation. The main aim of this research collaboration is to understand and strategically modify the cellular networks that mediate plant acclimation to adverse environments, employing Arabidopsis, tobacco (Nicotiana tabacum) and Chlamydomonas as model organisms. These efforts will contribute to 'smart breeding' methods designed to create crop plants with improved acclimation properties. To this end, the model oilseed crop Camelina sativa is being used to test modulators of acclimation for their potential to enhance crop yield under adverse environmental conditions. Here we highlight the current state of research on the role of gene expression, metabolism and signalling in acclimation, with a focus on chloroplast-related processes. In addition, further approaches to uncovering acclimation mechanisms derived from systems and computational biology, as well as adaptive laboratory evolution with photosynthetic microbes, are highlighted.


Assuntos
Folhas de Planta/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Camellia/genética , Camellia/metabolismo , Camellia/fisiologia , Chlamydomonas/genética , Chlamydomonas/metabolismo , Chlamydomonas/fisiologia , Folhas de Planta/genética , Biologia de Sistemas/métodos , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/fisiologia
12.
Appl Microbiol Biotechnol ; 104(2): 725-739, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31822980

RESUMO

The recent use of photosynthetic organisms such as Chlamydomonas reinhardtii in biomedical applications has demonstrated their potential for the treatment of acute and chronic tissue hypoxia. Moreover, transgenic microalgae have been suggested as an alternative in situ drug delivery system. In this study, we set out to identify the best available combination of strains and expression vectors to establish a robust platform for the expression of human pro-angiogenic growth factors, i.e., hVEGF-165, hPDGF-B, and hSDF-1, in biomedical settings. As a case study, combinations of two expression vectors (pOpt and pBC1) and two C. reinhardtii strains (UVM4 and UVM11) were compared with respect to hVEGF-165 transgene expression by determination of steady-state levels of transgenic transcripts and immunological detection of recombinant proteins produced and secreted by the generated strains. The results revealed the combination of the UVM11 strain with the pBC1 vector to be the most efficient one for high-level hVEGF-165 production. To assess the robustness of this finding, the selected combination was used to create hPDGF-B and hSDF-1 transgenic strains for optimized recombinant protein expression. Furthermore, biological activity and functionality of algal-produced recombinant pro-angiogenic growth factors were assessed by receptor phosphorylation and in vitro angiogenesis assays. The results obtained revealed a potentiating effect in the combinatorial application of transgenic strains expressing either of the three growth factors on endothelial cell tube formation ability, and thus support the idea of using transgenic algae expressing pro-angiogenic growth factors in wound healing approaches.


Assuntos
Quimiocina CXCL12/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo , Proteínas Recombinantes/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Indutores da Angiogênese , Quimiocina CXCL12/genética , Células Endoteliais/efeitos dos fármacos , Expressão Gênica , Perfilação da Expressão Gênica , Vetores Genéticos , Proteoma/análise , Proteínas Proto-Oncogênicas c-sis/genética , Proteínas Recombinantes/genética , Transcrição Gênica , Fator A de Crescimento do Endotélio Vascular/genética
13.
J Exp Bot ; 70(15): 3981-3993, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30976809

RESUMO

Plastoglobules are lipoprotein particles that are found in different types of plastids. They contain a very specific and specialized set of lipids and proteins. Plastoglobules are highly dynamic in size and shape, and are therefore thought to participate in adaptation processes during either abiotic or biotic stresses or transitions between developmental stages. They are suggested to function in thylakoid biogenesis, isoprenoid metabolism, and chlorophyll degradation. While several plastoglobular proteins contain identifiable domains, others provide no structural clues to their function. In this study, we investigate the role of plastoglobular protein 18 (PG18), which is conserved from cyanobacteria to higher plants. Analysis of a PG18 loss-of-function mutant in Arabidopsis thaliana demonstrated that PG18 plays an important role in thylakoid formation; the loss of PG18 results in impaired accumulation, assembly, and function of thylakoid membrane complexes. Interestingly, the mutant accumulated less chlorophyll and carotenoids, whereas xanthophyll cycle pigments were increased. Accumulation of photosynthetic complexes is similarly affected in both a Synechocystis and an Arabidopsis PG18 mutant. However, the ultrastructure of cyanobacterial thylakoids is not compromised by the lack of PG18, probably due to its less complex architecture.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Tilacoides/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Cloroplastos/genética , Eletroforese em Gel de Poliacrilamida , Regulação da Expressão Gênica de Plantas , Immunoblotting , Folhas de Planta/genética , Folhas de Planta/metabolismo , Tilacoides/genética
14.
Plant Cell ; 28(9): 2238-2260, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27543090

RESUMO

Photosynthesis occurs in thylakoids, a highly specialized membrane system. In the cyanobacterium Synechocystis sp PCC 6803 (hereafter Synechocystis 6803), the thylakoids are arranged parallel to the plasma membrane and occasionally converge toward it to form biogenesis centers. The initial steps in PSII assembly are thought to take place in these regions, which contain a membrane subcompartment harboring the early assembly factor PratA and are referred to as PratA-defined membranes (PDMs). Loss of CurT, the Synechocystis 6803 homolog of Arabidopsis thaliana grana-shaping proteins of the CURVATURE THYLAKOID1 family, results in disrupted thylakoid organization and the absence of biogenesis centers. As a consequence, PSII is less efficiently assembled and accumulates to only 50% of wild-type levels. CurT induces membrane curvature in vitro and is distributed all over the thylakoids, with local concentrations at biogenesis centers. There it forms a sophisticated tubular network at the cell periphery, as revealed by live-cell imaging. CurT is part of several high molecular mass complexes, and Blue Native/SDS-PAGE and isoelectric focusing demonstrated that different isoforms associate with PDMs and thylakoids. Moreover, CurT deficiency enhances sensitivity to osmotic stress, adding a level of complexity to CurT function. We propose that CurT is crucial for the differentiation of membrane architecture, including the formation of PSII-related biogenesis centers, in Synechocystis 6803.

15.
Biochim Biophys Acta ; 1857(3): 274-87, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26592144

RESUMO

Photosystem II (PSII), a large multisubunit membrane protein complex found in the thylakoid membranes of cyanobacteria, algae and plants, catalyzes light-driven oxygen evolution from water and reduction of plastoquinone. Biogenesis of PSII requires coordinated assembly of at least 20 protein subunits, as well as incorporation of various organic and inorganic cofactors. The stepwise assembly process is facilitated by numerous protein factors that have been identified in recent years. Further analysis of this process requires the development or refinement of specific methods for the identification of novel assembly factors and, in particular, elucidation of the unique role of each. Here we summarize current knowledge of PSII biogenesis in cyanobacteria, focusing primarily on the impact of methodological advances and innovations. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Conrad Mullineaux.


Assuntos
Proteínas de Bactérias/biossíntese , Cianobactérias/enzimologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Complexo de Proteína do Fotossistema II/biossíntese , Biossíntese de Proteínas/fisiologia
16.
Plant Cell Environ ; 40(3): 378-389, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27928824

RESUMO

In Synechocystis sp. PCC 6803, the flv4-2 operon encodes the flavodiiron proteins Flv2 and Flv4 together with a small protein, Sll0218, providing photoprotection for Photosystem II (PSII). Here, the distinct roles of Flv2/Flv4 and Sll0218 were addressed, using a number of flv4-2 operon mutants. In the ∆sll0218 mutant, the presence of Flv2/Flv4 rescued PSII functionality as compared with ∆sll0218-flv2, where neither Sll0218 nor the Flv2/Flv4 heterodimer are expressed. Nevertheless, both the ∆sll0218 and ∆sll0218-flv2 mutants demonstrated deficiency in accumulation of PSII proteins suggesting a role for Sll0218 in PSII stabilization, which was further supported by photoinhibition experiments. Moreover, the accumulation of PSII assembly intermediates occurred in Sll0218-lacking mutants. The YFP-tagged Sll0218 protein localized in a few spots per cell at the external side of the thylakoid membrane, and biochemical membrane fractionation revealed clear enrichment of Sll0218 in the PratA-defined membranes, where the early biogenesis steps of PSII occur. Further, the characteristic antenna uncoupling feature of the ∆flv4-2 operon mutants is shown to be related to PSII destabilization in the absence of Sll0218. It is concluded that the Flv2/Flv4 heterodimer supports PSII functionality, while the Sll0218 protein assists PSII assembly and stabilization, including optimization of light harvesting.


Assuntos
Proteínas de Bactérias/metabolismo , Luz , Óperon/genética , Complexo de Proteína do Fotossistema II/metabolismo , Synechocystis/metabolismo , Synechocystis/efeitos da radiação , Mutação/genética , Fenótipo , Espectrometria de Fluorescência , Tilacoides/metabolismo , Fatores de Tempo
17.
Plant Cell ; 26(2): 777-87, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24585838

RESUMO

The biogenesis and activity of chloroplasts in both vascular plants and algae depends on an intracellular network of nucleus-encoded, trans-acting factors that control almost all aspects of organellar gene expression. Most of these regulatory factors belong to the helical repeat protein superfamily, which includes tetratricopeptide repeat, pentatricopeptide repeat, and the recently identified octotricopeptide repeat (OPR) proteins. Whereas green algae express many different OPR proteins, only a single orthologous OPR protein is encoded in the genomes of most land plants. Here, we report the characterization of the only OPR protein in Arabidopsis thaliana, RAP, which has previously been implicated in plant pathogen defense. Loss of RAP led to a severe defect in processing of chloroplast 16S rRNA resulting in impaired chloroplast translation and photosynthesis. In vitro RNA binding and RNase protection assays revealed that RAP has an intrinsic and specific RNA binding capacity, and the RAP binding site was mapped to the 5' region of the 16S rRNA precursor. Nucleoid localization of RAP was shown by transient green fluorescent protein import assays, implicating the nucleoid as the site of chloroplast rRNA processing. Taken together, our data indicate that the single OPR protein in Arabidopsis is important for a basic process of chloroplast biogenesis.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , RNA Ribossômico 16S/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada , Dados de Sequência Molecular , Mutação/genética , Ligação Proteica , Biossíntese de Proteínas , Precursores de RNA/metabolismo , RNA de Plantas/metabolismo , Sequências Repetitivas de Aminoácidos
18.
Angew Chem Int Ed Engl ; 56(37): 11268-11271, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28371147

RESUMO

Until recently, it was believed that the genomes of higher organisms contain, in addition to the four canonical DNA bases, only 5-methyl-dC (m5 dC) as a modified base to control epigenetic processes. In recent years, this view has changed dramatically with the discovery of 5-hydroxymethyl-dC (hmdC), 5-formyl-dC (fdC), and 5-carboxy-dC (cadC) in DNA from stem cells and brain tissue. N6 -methyldeoxyadenosine (m6 dA) is the most recent base reported to be present in the genome of various eukaryotic organisms. This base, together with N4 -methyldeoxycytidine (m4 dC), was first reported to be a component of bacterial genomes. In this work, we investigated the levels and distribution of these potentially epigenetically relevant DNA bases by using a novel ultrasensitive UHPLC-MS method. We further report quantitative data for m5 dC, hmdC, fdC, and cadC, but we were unable to detect either m4 dC or m6 dA in DNA isolated from mouse embryonic stem cells or brain and liver tissue, which calls into question their epigenetic relevance.


Assuntos
Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Citidina/análogos & derivados , Citidina/metabolismo , Genoma , Fígado/metabolismo , Espectrometria de Massas/métodos , Células-Tronco Embrionárias Murinas/metabolismo , Animais , Chlamydomonas reinhardtii/genética , DNA/genética , Epigênese Genética , Limite de Detecção , Camundongos , Synechocystis/genética
19.
Biochim Biophys Acta ; 1847(9): 821-30, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25615584

RESUMO

Thylakoids mediate photosynthetic electron transfer and represent one of the most elaborate energy-transducing membrane systems. Despite our detailed knowledge of its structure and function, much remains to be learned about how the machinery is put together. The concerted synthesis and assembly of lipids, proteins and low-molecular-weight cofactors like pigments and transition metal ions require a high level of spatiotemporal coordination. While increasing numbers of assembly factors are being functionally characterized, the principles that govern how thylakoid membrane maturation is organized in space are just starting to emerge. In both cyanobacteria and chloroplasts, distinct production lines for the fabrication of photosynthetic complexes, in particular photosystem II, have been identified. This article is part of a Special Issue entitled: Chloroplast Biogenesis.


Assuntos
Tilacoides/fisiologia , Cloroplastos/fisiologia , Luz , Metabolismo dos Lipídeos , Biossíntese de Proteínas , Tilacoides/química , Tilacoides/ultraestrutura
20.
Plant Cell ; 25(10): 3926-43, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24096342

RESUMO

In vascular plants, the chloroplast NAD(P)H dehydrogenase complex (NDH-C) is assembled from five distinct subcomplexes, the membrane-spanning (subM) and the luminal (subL) subcomplexes, as well as subA, subB, and subE. The assembly process itself is poorly understood. Vascular plant genomes code for two related intrinsic thylakoid proteins, photosynthesis-affected mutant68 (PAM68), a photosystem II assembly factor, and photosynthesis-affected mutant68-like (PAM68L). As we show here, inactivation of Arabidopsis thaliana PAM68L in the pam68l-1 mutant identifies PAM68L as an NDH-C assembly factor. The mutant lacks functional NDH holocomplexes and accumulates three distinct NDH-C assembly intermediates (subB, subM, and subA+L), which are also found in mutants defective in subB assembly (ndf5) or subM expression (chlororespiratory reduction4-3 mutant). NDH-C assembly in the cyanobacterium Synechocystis sp PCC 6803 and the moss Physcomitrella patens does not require PAM68 proteins, as demonstrated by the analysis of knockout lines for the single-copy PAM68 genes in these species. We conclude that PAM68L mediates the attachment of subB- and subM-containing intermediates to a complex that contains subA and subL. The evolutionary appearance of subL and PAM68L during the transition from mosses like P. patens to flowering plants suggests that the associated increase in the complexity of the NDH-C might have been facilitated by the recruitment of evolutionarily novel assembly factors like PAM68L.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/enzimologia , NADPH Desidrogenase/metabolismo , Fotossíntese , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Bryopsida/metabolismo , Proteínas de Cloroplastos/genética , NADPH Desidrogenase/genética , Filogenia , Synechocystis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA