Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 55(27): 3803-14, 2016 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-27319381

RESUMO

Laser-induced temperature-jump relaxation spectroscopy was used to study the active site mobile-loop dynamics found in the binding of the NADH nucleotide cofactor and oxamate substrate mimic to lactate dehydrogenase in Bacillus stearothermophilus thermophilic bacteria (bsLDH). The kinetic data can be best described by a model in which NADH can bind only to the open-loop apoenzyme, oxamate can bind only to the bsLDH·NADH binary complex in the open-loop conformation, and oxamate binding is followed by closing of the active site loop preventing oxamate unbinding. The open and closed states of the loop are in dynamic equilibrium and interconvert on the submillisecond time scale. This interconversion strongly accelerates with an increase in temperature because of significant enthalpy barriers. Binding of NADH to bsLDH results in minor changes of the loop dynamics and does not shift the open-closed equilibrium, but binding of the oxamate substrate mimic shifts this equilibrium to the closed state. At high excess oxamate concentrations where all active sites are nearly saturated with the substrate mimic, all active site mobile loops are mainly closed. The observed active-loop dynamics for bsLDH is very similar to that previously observed for pig heart LDH.


Assuntos
Geobacillus stearothermophilus/enzimologia , L-Lactato Desidrogenase/química , L-Lactato Desidrogenase/metabolismo , NAD/metabolismo , Animais , Sítios de Ligação , Domínio Catalítico , Cinética , Ligação Proteica , Conformação Proteica , Especificidade por Substrato , Suínos , Termodinâmica
2.
Biochemistry ; 52(11): 1886-92, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23428201

RESUMO

Large scale dynamics within the Michaelis complex mimic of Bacillus stearothermophilus thermophilic lactate dehydrogenase, bsLDH·NADH·oxamate, were studied with site specific resolution by laser-induced temperature jump relaxation spectroscopy with a time resolution of 20 ns. NADH emission and Trp emission from the wild type and a series of single-tryptophan bsLDH mutants, with the tryptophan positions different distances from the active site, were used as reporters of evolving structure in response to the rapid change in temperature. Several distinct dynamical events were observed on the millisecond to microsecond time scale involving motion of atoms spread over the protein, some occurring concomitantly or nearly concomitantly with structural changes at the active site. This suggests that a large portion of the protein-substrate complex moves in a rather concerted fashion to bring about catalysis. The catalytically important surface loop undergoes two distinct movements, both needed for a competent enzyme. Our results also suggest that what is called "loop motion" is not just localized to the loop and active site residues. Rather, it involves the motion of atoms spread over the protein, even some quite distal from the active site. How these results bear on the catalytic mechanism of bsLDH is discussed.


Assuntos
Geobacillus stearothermophilus/enzimologia , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Triptofano/genética , Domínio Catalítico , Geobacillus stearothermophilus/genética , Geobacillus stearothermophilus/metabolismo , Cinética , L-Lactato Desidrogenase/química , Modelos Moleculares , NAD/química , NAD/metabolismo , Ácido Oxâmico/química , Ácido Oxâmico/metabolismo , Mutação Puntual , Conformação Proteica , Temperatura , Triptofano/química , Triptofano/metabolismo
3.
Biophys J ; 88(4): 2833-47, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15653739

RESUMO

Hydrogen bonding is a fundamental element in protein structure and function. Breaking a single hydrogen bond may impair the stability of a protein. We report an infrared vibrational spectral marker for probing the hydrogen-bond number for buried, protonated Asp or Glu residues in proteins. Ab initio computational studies were performed on hydrogen-bonding interactions of a COOH group with a variety of side-chain model compounds of polar and charged amino acids in vacuum using density function theory. For hydrogen-bonding interactions with polar side-chain groups, our results show a strong correlation between the C=O stretching frequency and the hydrogen bond number of a COOH group: approximately 1759-1776 cm(-1) for zero, approximately 1733-1749 cm(-1) for one, and 1703-1710 cm(-1) for two hydrogen bonds. Experimental evidence for this correlation will be discussed. In addition, we show an approximate linear correlation between the C=O stretching frequency and the hydrogen-bond strength. We propose that a two-dimensional infrared spectroscopy, C=O stretching versus O-H stretching, may be employed to identify the specific type of hydrogen-bonding interaction. This vibrational spectral marker for hydrogen-bonding interaction is expected to enhance the power of time-resolved Fourier transform infrared spectroscopy for structural characterization of functionally important intermediates of proteins.


Assuntos
Ácido Aspártico/química , Biofísica/métodos , Ácido Glutâmico/química , Espectrofotometria/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Proteínas de Bactérias/química , Carbono/química , Cristalografia por Raios X , Hidrogênio/química , Ligação de Hidrogênio , Modelos Moleculares , Oxigênio/química , Fotorreceptores Microbianos/química , Conformação Proteica , Prótons , Espectrofotometria Infravermelho , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação , Relação Estrutura-Atividade , Termodinâmica , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA