Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Entropy (Basel) ; 22(2)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33286001

RESUMO

Thermomass theory was developed to deal with the non-Fourier heat conduction phenomena involving the influence of heat inertia. However, its structure, derived from an analogy to fluid mechanics, requires further mathematical verification. In this paper, General Equation for Non-Equilibrium Reversible-Irreversible Coupling (GENERIC) framework, which is a geometrical and mathematical structure in nonequilibrium thermodynamics, was employed to verify the thermomass theory. At first, the thermomass theory was introduced briefly; then, the GENERIC framework was applied in the thermomass gas system with state variables, thermomass gas density ρh and thermomass momentum mh, and the time evolution equations obtained from GENERIC framework were compared with those in thermomass theory. It was demonstrated that the equations generated by GENERIC theory were the same as the continuity and momentum equations in thermomass theory with proper potentials and eta-function. Thermomass theory gives a physical interpretation to the GENERIC theory in non-Fourier heat conduction phenomena. By combining these two theories, it was found that the Hamiltonian energy in reversible process and the dissipation potential in irreversible process could be unified into one formulation, i.e., the thermomass energy. Furthermore, via the framework of GENERIC, thermomass theory could be extended to involve more state variables, such as internal source term and distortion matrix term. Numerical simulations investigated the influences of the convective term and distortion matrix term in the equations. It was found that the convective term changed the shape of thermal energy distribution and enhanced the spreading behaviors of thermal energy. The distortion matrix implies the elasticity and viscosity of the thermomass gas.

2.
Sci Rep ; 5: 12610, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26219724

RESUMO

Through natural selection, many plant organs have evolved optimal morphologies at different length scales. However, the biomechanical strategies for different plant species to optimize their organ structures remain unclear. Here, we investigate several species of aquatic macrophytes living in the same natural environment but adopting distinctly different twisting chiral morphologies. To reveal the principle of chiral growth in these plants, we performed systematic observations and measurements of morphologies, multiscale structures, and mechanical properties of their slender emergent stalks or leaves. Theoretical modeling of pre-twisted beams in bending and buckling indicates that the different growth tactics of the plants can be strongly correlated with their biomechanical functions. It is shown that the twisting chirality of aquatic macrophytes can significantly improve their survivability against failure under both internal and external loads. The theoretical predictions for different chiral configurations are in excellent agreement with experimental measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA