Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Anal Bioanal Chem ; 416(18): 4131-4141, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38780654

RESUMO

Wax printing is the most widely used method for fabricating microfluidic paper-based analytical devices (µPADs), but it still suffers from disadvantages like discontinuation of wax printers and need for additional equipment for heating treatment. To address these issues, this work initially describes a new class of wax printing approach for high-precision, batch fabrication of µPADs using a household 3D printer. It only involves a one patterning step of printing polyethylene wax into rice paper body. Under optimized parameters, a fabrication resolution, namely the minimum hydrophilic channel width, down to ~189 ± 30 µm could be achieved. In addition, the analytical applicability of such polyethylene wax-patterned µPADs was demonstrated well with enhanced colorimetric detection of dopamine as a model analyte by combining metal-organic framework (MOF) based nanoenzymes (ZIF-67) with a smartphone (for portable quantitative readout). The developed nanosensor could linearly detect dopamine over a concentration range from 10 to 1000 µM, with a detection limit of ca. 2.75 µM (3σ). The recovery results for analyzing several real samples (i.e., pig feed, chicken feed, pork and human serum) were between 91.82 and 102.79%, further validating its good detection accuracy for potential practical applications in food safety and medical diagnosis.


Assuntos
Dopamina , Limite de Detecção , Papel , Impressão Tridimensional , Dopamina/análise , Dopamina/sangue , Animais , Humanos , Estruturas Metalorgânicas/química , Colorimetria/métodos , Colorimetria/instrumentação , Suínos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Dispositivos Lab-On-A-Chip , Galinhas , Ração Animal/análise , Desenho de Equipamento
2.
Anal Bioanal Chem ; 416(8): 1821-1832, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38363308

RESUMO

This paper describes initially the application of the Tyndall effect (TE) of metal-organic framework (MOF) materials as a colorimetric signaling strategy for the sensitive detection of pyrophosphate ion (PPi). The used MOF NH2-MIL-101(Fe) was prepared with Fe3+ ions and fluorescent ligands of 2-amino terephthalic acid (NH2-BDC). The fluorescence of NH2-BDC in MOF is quenched due to the ligand-to-metal charge transfer effect, while the NH2-MIL-101(Fe) suspension shows a strong TE. In the presence of PPi analyte, the MOFs will undergo decomposition because of the competitive binding of Fe3+ by PPi over NH2-BDC, resulting in a significant decrease in the TE signal and fluorescence restoration from the released ligands. The results demonstrate that the new method only requires a laser pointer pen (for TE creation) and a smartphone (for portable quantitative readout) to detect PPi in a linear concentration range of 1.25-800 µM, with a detection limit of ~210 nM (3σ) which is ~38 times lower than that obtained from traditional fluorescence with a spectrophotometer (linear concentration range, 50-800 µM; detection limit, 8.15 µM). Moreover, the acceptable recovery of PPi in several real samples (i.e., pond water, black tea, and human serum and urine) ranges from 97.66 to 119.15%.


Assuntos
Estruturas Metalorgânicas , Humanos , Estruturas Metalorgânicas/química , Colorimetria/métodos , Difosfatos/química , Aminoácidos
3.
Photochem Photobiol Sci ; 22(3): 631-640, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36436206

RESUMO

This work describes two new colorimetric methods for smartphone-based point-of-care nanosensing of toxic Ag+ ions. They were based on the analyte-triggered in situ "off-on" of Tyndall effect (TE) of non-plasmonic colloid or plasmonic metal nanoprobes. The first TE-inspired assay (TEA) focused on the initial analytical application of precipitation reactions where a non-plasmonic AgCl colloid could be formed once mixing the analyte with a NaCl solution. Such AgCl colloid displayed strong visual TE signals after their irradiation by a laser pointer pen, which unexpectedly achieved a detection limit of ~ 400 nM. The second TEA was further designed to reduce the limit down to ~ 78 nM using the analyte's oxidizability towards 3,3',5,5'-tetramethylbenzidine molecules. The redox reaction could create positively charged products that could make negatively charged plasmonic gold nanoparticles aggregate through electrostatic interactions to remarkably amplify their TE responses. Both limits were lower than the minimum allowable Ag+ level (~ 460 nM) in drinking water issued by the World Health Organization. The satisfactory recovery results for detecting Ag+ ions in river, pond, tap, and drinking water additionally demonstrated good selectivity, accuracy and practicality of the proposed methods for potential point-of-need uses in environmental analysis, public health, water safety, etc.

4.
Anal Bioanal Chem ; 415(14): 2705-2713, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37017723

RESUMO

This work describes two new colorimetric nanosensors for label-free, equipment-free quantitative detection of nanomolar copper (II) (Cu2+) and mercury (II) (Hg2+) ions. Both are based on the analyte-promoted growth of Au nanoparticles (AuNPs) from the reduction of chloroauric acid by 4-morpholineethanesulfonic acid. For the Cu2+ nanosensor, the analyte can accelerate such a redox system to rapidly form a red solution containing dispersed, uniform, spherical AuNPs that is related to these particles' surface plasmon resonance property. For the Hg2+ nanosensor, on the other hand, a blue mixture consisting of aggregated, ill-defined AuNPs with various sizes can be created, showing a significantly enhanced Tyndall effect (TE) signal (in comparison with that produced in the red solution of AuNPs). By using a timer and a smartphone to quantitatively measure the time of producing the red solution and the TE intensity (i.e., the average gray value of the corresponding image) of the blue mixture, respectively, the developed nanosensors are well demonstrated to achieve linear ranges of 6.4 nM to 100 µM and 6.1 nM to 1.56 µM for Cu2+ and Hg2+, respectively, with detection limits down to 3.5 and 0.1 nM, respectively. The acceptable recovery results obtained from the analysis of the two analytes in the complex real water samples including drinking water, tap water, and pond water ranged from 90.43 to 111.56%.

5.
Analyst ; 145(21): 6981-6986, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-32857828

RESUMO

This paper initially describes a nanosensor for fluorescence detection of Al3+ ions by using graphene quantum dots (GQDs) that are synthesized via microwave-assisted single-step ring-closure condensation of glucose molecules. The one-pot synthesis strategy based on the microwave radiation could be finished in several minutes and no post-modification of the GQDs was required. In particular, the GQD nanoprobes showed a sensitive and specific fluorescence enhancement response to Al3+. The involved mechanism might be the Al3+-mediated aggregation of the GQDs leading to aggregation-induced enhanced emission (AIEE). Under optimal conditions, this new fluorescent nanosensor was able to quantitatively detect Al3+ in a linear concentration range of 0.4-500 µM. The limit of detection was estimated to be ∼59.8 nM according to the 3σ rule, which made it be among the most sensitive systems currently available for sensing the target ion. Moreover, satisfactory recovery results (ranging from 96.8 to 109.7%) of analyzing a set of real water examples additionally validated its accuracy for practical applications. Considering its simplicity, high sensitivity and specificity, low cost, and good reliability, the developed fluorescent nanosensing system for Al3+ holds great promise for broad uses in water safety, environmental monitoring, and waste management.

6.
Anal Chem ; 91(23): 15114-15122, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31687801

RESUMO

This work initially reports the use of a quite familiar optical phenomenon of colloidal solutions, namely, the Tyndall Effect (TE) as signal readout for highly sensitive colorimetric chemical and biological analysis. Taking gold nanoparticles (GNPs) as a model colloid, the TE-inspired assay (TEA) is developed based on the conversion of a specific recognition event (e.g., the aptamer-analyte binding) into the aggregation of GNPs, leading to a significant TE enhancement. In the TEA, a cheap laser pointer pen is used as a hand-held light source, while a smartphone serves as a portable quantitative reader. The results show that the TE signaling strategy achieves a ∼1000-fold sensitivity improvement compared with the most common surface plasmon resonance signaling method using GNPs. The utility of the TEA is well demonstrated with the inexpensive, rapid, and portable detection of trace levels of analytes ranging from an important small-molecule drug (cocaine, ∼1.5 pM detection limit) to a protein biomarker (interferon-γ, ∼2.2 fM detection limit) and a toxic metal ion (Ag+, ∼1.4 nM detection limit). In addition, as the TE enhancement simply stems from the aggregation of either bare (unmodified) or modified GNPs, the TEA is universally applicable to almost all of the existing GNP-based liquid-phase colorimetric assays. The TEA method developed herein lights a new way for equipment-free point-of-care analysis in various fields including medical diagnosis, food safety evaluation, and environmental monitoring, especially in the resource-poor areas of the world.

7.
Anal Bioanal Chem ; 411(10): 2019-2029, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30758530

RESUMO

A method that combines five-way fluorescence kinetics with fourth-order calibration for interference-free quantification of diclofenac sodium in river water was proposed and tested. Traditional fluorescence methods may not be suitable for such measurements since the fluorescence properties of the analyte are highly dependent on both pH and irradiation time in situ. In the method considered here, a five-way emission-excitation-time-pH data array was obtained from the samples by introducing the pH level and irradiation time as two extra modes. Then the data array was resolved by three fourth-order calibration algorithms: alternating fitting weighted residue quinquelinear decomposition (AFWRQQLD), five-way parallel factor analysis (five-PARAFAC), and alternating quinquelinear decomposition (AQQLD). The average recoveries and detection limits calculated for diclofenac sodium in a set of analyte-spiked river water samples using AFWRQQLD, five-PARAFAC, and AQQLD were 97.2 ± 3.2% and 1.9 ng mL-1, 96.8 ± 3.0% and 4.0 ng mL-1, and 92.6 ± 2.7% and 2.5 ng mL-1, respectively. A study of other figures of merit, statistical analysis, an elliptical joint confidence region test, and a t-test were additionally carried out to validate the analytical performance of the proposed method in detail. The results demonstrated that this new method required only two steps (fluorescence measurement and algorithm analysis) to determine the analyte concentration. It could therefore provide the basis for developing novel reliable and sensitive approaches for the accurate detection of pharmaceutical pollutants with unstable fluorescence properties in real complex matrices such as environmental water samples. Graphical Abstract ᅟ.


Assuntos
Algoritmos , Diclofenaco/análise , Monitoramento Ambiental/métodos , Espectrometria de Fluorescência/métodos , Poluentes Químicos da Água/análise , Anti-Inflamatórios não Esteroides/análise , Calibragem , Análise Fatorial , Fluorescência , Concentração de Íons de Hidrogênio , Cinética , Limite de Detecção , Água/análise
8.
J Sep Sci ; 42(16): 2687-2695, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31161698

RESUMO

As signal molecules, auxins play an important role in mediating plant growth. Due to serious interfering substances in plants, it is difficult to accurately detect auxins with traditional solid-phase extraction methods. To improve the selectivity of sample pretreatment, a novel molecularly imprinted polymer -coated solid-phase microextraction fiber, which could be coupled directly to high-performance liquid chromatography, was prepared with indole acetic acid as template molecule for the selective extraction of auxins. The factors influencing the polymer formation, such as polymerization solvent, cross-linker, and polymerization time, were investigated in detail to enhance the performance of indole acetic acid-molecularly imprinted polymer coating. The morphological and chemical stability of this molecularly imprinted polymer-coated fiber was characterized by scanning electron microscopy, infrared spectrometry, and thermal analysis. The extraction capacity of the molecularly imprinted polymer-coated solid-phase microextraction fiber was evaluated for the selective extraction of indole acetic acid and indole-3-pyruvic acid followed by high-performance liquid chromatography analysis. The linear range for indole acetic acid and indole-3-pyruvic acid was 1-100 µg/L and their detection limit was 0.5 µg/L. The method was applied to the simultaneous determination of two auxins in two kinds of tobacco (Nicotiana tabacum L and Nicotiana rustica L) samples, with recoveries range from 82.1 to 120.6%.


Assuntos
Ácidos Indolacéticos/análise , Impressão Molecular , Nicotiana/química , Polímeros/química , Microextração em Fase Sólida , Cromatografia Líquida de Alta Pressão
9.
Analyst ; 142(3): 511-516, 2017 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-28106171

RESUMO

In this work, a new method named laser-heating-wax-printing (LHWP) is described to fabricate paper devices for developing sensitive, affordable, user-friendly paper-based enzyme-linked immunosorbent assays (P-ELISAs) that initially use common pen-type pH meters for portable, quantitative readout. The LHWP enables a rapid patterning of wax in paper via one step of heating the wax layer coated on the paper surface using a mini-type CO2 laser machine. Wax-patterned paper microzones created in this way are utilized to conduct the pen-type pH meter-based P-ELISAs with enzyme-loaded SiO2 microbeads for highly efficient signal amplification of each antibody-antigen binding event. The results show that this new P-ELISA system is quantitatively sensitive to the concentrations of a model protein analyte in buffer samples ranging from 12.5 to 200 pg mL-1, with a limit of detection of ca. 7.5 pg mL-1 (3σ). Moreover, the satisfactory recovery results of assaying several human serum samples validate its feasibility for practical applications.


Assuntos
Ensaio de Imunoadsorção Enzimática , Papel , Temperatura Alta , Humanos , Concentração de Íons de Hidrogênio , Impressão , Dióxido de Silício , Ceras
10.
Anal Chem ; 86(4): 2005-12, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24444190

RESUMO

Microfluidic paper-based analytical devices (µPADs) are a growing class of low-cost chemo/biosensing technologies designed for point-of-use applications. In this article, we describe MTWP (movable-type wax printing), a facile method for the fabrication of µPADs. MTWP is inspired by the Chinese movable-type printing and requires only a hot plate and homemade small iron movable components. It is able to pattern various wax microstructures in paper via a simple adjustment of the number, patterning forms or types of the metal movable components. This inexpensive and versatile method may thus hold great potential for producing wax-patterned µPADs by untrained operators at minimized cost in developing countries. In addition, two novel equipment-free assay methods are further developed to render µPAD measurements straightforward and quantitative. They use the flow-through time of a detection reagent in a three-dimensional paper device and the number of colored detection microzones in a 24-zone paper device as the detection motifs. The timing method is based on the selective wettability change of paper from hydrophilic to hydrophobic that is mediated by enzymatic reactions. The counting method is carried out on the basis of oxidation-reduction reactions of a colored substance, namely iodine. Their utility is demonstrated with quantitative detection of hydrogen peroxide as a model analyte. These methods require only a timer or a cell phone with a timing function and the abilities of seeing color and of counting for quantitative µPAD measurement, thus making them simple, cost-efficient, and useful sensor technologies for a great diversity of point-of-need applications especially in resource-poor settings.

11.
Analyst ; 139(9): 2193-8, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24647581

RESUMO

In this paper, we report for the first time an electrochemical biosensor for single-step, reagentless, and picomolar detection of a sequence-specific DNA-binding protein using a double-stranded, electrode-bound DNA probe terminally modified with a redox active label close to the electrode surface. This new methodology is based upon local repression of electrolyte diffusion associated with protein-DNA binding that leads to reduction of the electrochemical response of the label. In the proof-of-concept study, the resulting electrochemical biosensor was quantitatively sensitive to the concentrations of the TATA binding protein (TBP, a model analyte) ranging from 40 pM to 25.4 nM with an estimated detection limit of ∼10.6 pM (∼80 to 400-fold improvement on the detection limit over previous electrochemical analytical systems).


Assuntos
Proteínas de Ligação a DNA/química , Técnicas Eletroquímicas/instrumentação , Eletrólitos/química , Indicadores e Reagentes/química , Difusão , Limite de Detecção , Reprodutibilidade dos Testes
12.
Food Chem ; 453: 139654, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38781899

RESUMO

As a natural low-calorie sweetener, Mogroside V (Mog-V) has gradually become one of the alternatives to sucrose with superior health attributes. However, Mog-V will bring unpleasant aftertastes when exceeding a threshold concentration. To investigate the possibility of soy protein isolates (SPIs), namely ß-conglycinin (7S), and glycinin (11S) as flavor-improving agents of Mog-V, the binding mechanism between Mog-V and SPIs was explored through multi-spectroscopy, particle size, zeta potential, and computational simulation. The results of the multi-spectroscopic experiments indicated that Mog-V enhanced the fluorescence of 7S/11S protein in a static mode. The binding affinity of 7S-Mog-V was greater compared with 11S-Mog-V. Particle size and zeta potential analysis revealed that the interaction could promote aggregation of 7S/11S protein with different stability. Furthermore, computational simulations further confirmed that Mog-V could interact with the 7S/11S protein in different ways. This research provides a theoretical foundation for the development and application of SPI to improve the flavor of Mog-V, opening a new avenue for further expanding the market demand for Mog-V.


Assuntos
Proteínas de Soja , Edulcorantes , Proteínas de Soja/química , Proteínas de Soja/metabolismo , Edulcorantes/química , Edulcorantes/metabolismo , Globulinas/química , Globulinas/metabolismo , Ligação Proteica , Antígenos de Plantas/química , Antígenos de Plantas/metabolismo , Simulação por Computador , Proteínas de Armazenamento de Sementes/química , Proteínas de Armazenamento de Sementes/metabolismo , Simulação de Acoplamento Molecular , Triterpenos
13.
Sci Total Environ ; 918: 170817, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38340818

RESUMO

Di(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer known to pose health risks to humans upon exposure. Recognizing the toxic nature of DEHP, our study aimed to elucidate the response mechanisms in Brassica chinensis L. (Shanghai Qing) when subjected to varying concentrations of DEHP (2 mg kg-1, 20 mg kg-1, and 50 mg kg-1), particularly under tissue stress. The findings underscored the substantial impact of DEHP treatment on the growth of Brassica chinensis L., with increased DEHP concentration leading to a notable decrease in chlorophyll levels and alterations in the content of antioxidant enzyme activities, particularly superoxide dismutase (SOD) and peroxidase (POD). Moreover, elevated DEHP concentrations correlated with increased malondialdehyde (MDA) levels. Our analysis detected a total of 507 metabolites in Brassica chinensis L., with 331 in shoots and 176 in roots, following DEHP exposure. There was a significant difference in the number of metabolites in shoots and roots, with 79 and 64 identified, respectively (VIP > 1, p < 0.05). Metabolic pathway enrichment in Brassica chinensis L. shoots revealed significant perturbations in valine, leucine, and isoleucine biosynthesis and degradation, aminoacyl-tRNA, and glucosinolate biosynthesis. In the roots of Brassica chinensis L., varying DEHP levels exerted a substantial impact on the biosynthesis of zeatin, ubiquinone terpenoids, propane, piperidine, and pyridine alkaloids, as well as glutathione metabolic pathways. Notably, DEHP's influence was more pronounced in the roots than in the shoots, with higher DEHP concentrations affecting a greater number of metabolic pathways. This experimental study provides valuable insights into the molecular mechanisms underlying DEHP-induced stress in Brassica chinensis L., with potential implications for human health and food safety.


Assuntos
Brassica , Dietilexilftalato , Ácidos Ftálicos , Humanos , Dietilexilftalato/metabolismo , China , Ácidos Ftálicos/metabolismo , Antioxidantes/metabolismo , Brassica/metabolismo
14.
Food Chem X ; 22: 101516, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38911914

RESUMO

In this study, the metabolic profiles of traditional craftsmanship (TC) Liupao tea presented great changes at different processing stages. The contents of flavonoids and their glycosides generally exhibited a continuing downward trend, resulting in the sensory quality of TC-Liupao tea gradually improved. However, the taste of TC-Liupao tea faded when piling exceeded 12 h, as a result of the excessive degradation of some key flavor substances. Therefore, it could be deduced that piling for 10 h might be optimum for the quality formation of TC-Liupao tea. Sphingomonas, Acrobacter, Microbacterium, and Methylobacterium were the dominant bacteria during piling. The correlation analysis between differential metabolites and bacteria showed that only Sphingomonas and Massilia were significantly correlated to metabolites, demonstrating that the bacteria had less effect on the transformation of metabolites. Thus, the metabolic structure change during the process of TC-Liupao tea might be mainly attributed to the high temperature and humidity environment.

15.
Talanta ; 276: 126209, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38728802

RESUMO

The rapid development of nanozymes has offered substantial opportunities for the fields of biomedicine, chemical sensing, and food safety. Among these applications, multichannel sensors, with the capability of simultaneously detecting multiple target analytes, hold promise for the practical application of nanozymes in chemical sensing with high detection efficiency. In this study, Rh-decorated Pd nanocubes (Pd-Rh nanocubes) with significantly enhanced peroxidase-like activity are synthesized through the mediation of underpotential deposition (UPD) and subsequently employed to develop a multichannel colorimetric sensor for discriminating tea polyphenols (TPs) and tea authentication. Based on a single reactive unit of efficient catalytic oxidation of 3,3',5,5'-tetramethylbenzidine dihydrochloride (TMB), the nanozyme-based multichannel colorimetric sensor responds to each analyte in as short as 1 min. With the aid of principal component analysis (PCA) and hierarchical cluster analysis (HCA), various TPs and types of tea can be accurately identified. This work not only provides a new type of simply structured and highly active nanozymes but also develops a concise and rapid multichannel sensor for practical application in tea authentication and quality inspection.


Assuntos
Colorimetria , Paládio , Polifenóis , Chá , Chá/química , Polifenóis/análise , Polifenóis/química , Colorimetria/métodos , Paládio/química , Benzidinas/química , Nanopartículas Metálicas/química , Análise de Componente Principal , Peroxidase/química , Catálise , Oxirredução
16.
RSC Adv ; 14(25): 17491-17497, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38818364

RESUMO

A dual-signal optical sensing platform was successfully developed for the determination of ascorbic acid (AA) based on blue fluorescent carbon dots (CDs) and manganese dioxide nanosheets (MnO2 NSs) with strong Tyndall effect (TE) scattering and fluorescence quenching capabilities. In this nanosystem, CDs-MnO2 NS composites were employed as probes to evaluate the AA concentration. Owing to the strong reduction, the presence of the target AA could reduce the MnO2 NSs to Mn2+ and induce the degradation of the MnO2 NSs, resulting in a significant decrease in the TE scattering intensity of the MnO2 NSs and the fluorescence recovery of the CDs. Therefore, a novel optical sensor based on TE scattering and fluorescence dual detectors was developed for the sensitive determination of AA. Under optimized conditions, the limits of detection (LODs) of the two modes were 113 and 3 nM, respectively. Furthermore, the dual-signal optical sensing platform was successfully applied for the detection of AA in human serum.

17.
Analyst ; 138(2): 671-6, 2013 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-23183392

RESUMO

In this paper, we report a simple, low-cost method for rapid, highly reproductive fabrication of paper-based microfluidics by using a commercially available, minitype CO(2) laser cutting/engraving machine. This method involves only one operation of cutting a piece of paper by laser according to a predesigned pattern. The hollow microstructures formed in the paper are used as the 'hydrophobic barriers' to define the hydrophilic flowing paths. A typical paper device on a 4 cm × 4 cm piece of paper can be fabricated within ∼7-20 s; it is ready for use once the cutting process is finished. The main fabrication parameters such as the applied current and cutting rate of the laser were optimized. The fabrication resolution and multiplexed analytical capability of the hollow microstructure-patterned paper were also characterized.


Assuntos
Glucose/análise , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Soroalbumina Bovina/análise , Glucose/química , Glucose Oxidase/química , Peroxidase do Rábano Silvestre/química , Interações Hidrofóbicas e Hidrofílicas , Lasers , Nanoestruturas , Papel , Soroalbumina Bovina/química
18.
Food Chem X ; 19: 100850, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37780275

RESUMO

The authenticity of honey currently poses challenges to food quality control, thus requiring continuous modernization and improvement of related analytical methodologies. This review provides a comprehensively overview of honey authenticity challenges and related analytical methods. Firstly, direct and indirect methods of honey adulteration were described in detail, commenting the existing challenges in current detection methods and market supervision approaches. As an important part, the integrated metabolomic workflow involving sample processing procedures, instrumental analysis techniques, and chemometric tools in honey authenticity studies were discussed, with a focus on their advantages, disadvantages, and scopes. Among them, various improved microscale extraction methods, combined with hyphenated instrumental analysis techniques and chemometric data processing tools, have broad application potential in honey authenticity research. The future of honey authenticity determination will involve the use of simplified and portable methods, which will enable on-site rapid detection and transfer detection technologies from the laboratory to the industry.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121920, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36201870

RESUMO

The natural flavonoids with bioactivity as secondary plant metabolites are mostly found in fruits, vegetables, tea and herbs, the distribution and bioavailability of which in vivo depends on the interaction and successive binding with carrier proteins in the systemic circulation. In this paper, the binding behavior of bioactive 7-methoxyflavone (7-MF) with human serum albumin (HSA) was studied with the aid of the combination of multi-spectroscopic methods, molecular docking and molecular dynamic simulation. The results of multi-spectroscopic experiments revealed that 7-MF interacted with HSA predominantly via fluorescence static quenching and the microenvironment around the fluorophore Trp residues in HSA became more hydrophilicity with the binding of 7-MF. Thermodynamic analysis demonstrated that hydrogen bonds and van der Waals forces played a dominant role in stabilizing the HSA-7-MF complex. Moreover, the docking experiment and molecular dynamic simulation further confirmed that 7-MF could enter the active cavity of HSA and caused more stable conformation and change of secondary structure of HSA through forming hydrogen bond. The exploration of the mechanism of 7-MF binding to HSA lights a new avenue to understand the stability, transport and distribution of 7-MF and 7-MF may hold great potential to be extended as a promising alternative of dietary supplements or pharmaceutical agents.


Assuntos
Albumina Sérica Humana , Humanos , Albumina Sérica Humana/química , Simulação de Acoplamento Molecular , Ligação Proteica , Sítios de Ligação , Espectrometria de Fluorescência , Termodinâmica , Dicroísmo Circular
20.
Anal Methods ; 15(14): 1819-1825, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36961405

RESUMO

A novel nanozyme of bimetallic (Ni/Co) metal-organic framework (Ni/Co-MOF) was synthesized using a simultaneous precipitation and acid etching method with a zeolitic imidazolate framework ZIF-67 as the template. The as-synthesized Ni/Co-MOF catalyst presented a three-dimensional hollow nanocage structure and exhibited excellent intrinsic oxidase-like activity. It was demonstrated that Ni/Co-MOF could directly catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to produce a blue product (oxidized TMB, oxTMB) in the absence of H2O2. The mechanisms and kinetics of this nanozyme activity were investigated, and it was determined that the catalytic activity of Ni/Co-MOF was closely related to temperature and solution pH. Owing to its strong reducibility, ascorbic acid (AA) could reduce oxTMB, and the blue color of the reaction mixture faded over time. Therefore, a novel colorimetric platform was constructed to detect AA based on the oxidase-like activity of Ni/Co-MOF. Under optimal conditions, the absorbance of ox-TMB at 652 nm decreased linearly over the 0.015-50 µM AA range with a detection limit of 0.004 µM.


Assuntos
Colorimetria , Estruturas Metalorgânicas/química , Níquel/química , Cobalto/química , Colorimetria/métodos , Oxirredutases/metabolismo , Ácido Ascórbico/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA