Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; : e17508, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39161130

RESUMO

Genome-wide technologies open up new possibilities to clarify questions on genetic structure and phylogeographic history of taxa previously studied with microsatellite loci and mitochondrial sequences. Here, we used 736 individual red deer (Cervus elaphus) samples genotyped at 35,701 single nucleotide polymorphism loci (SNPs) to assess the population structure of the species throughout Europe. The results identified 28 populations, with higher degrees of genetic distinction in peripheral compared to mainland populations. Iberian red deer show high genetic differentiation, with lineages in Western and Central Iberia maintaining their distinctiveness, which supports separate refugial ranges within Iberia along with little recent connection between Iberian and the remaining Western European populations. The Norwegian population exhibited the lowest variability and the largest allele frequency differences from mainland European populations, compatible with a history of bottlenecks and drift during post-glacial colonization from southern refugia. Scottish populations showed high genetic distance from the mainland but high levels of diversity. Hybrid zones were found between Eastern and Western European lineages in Central Europe as well as in the Pyrenees, where red deer from France are in close contact with Iberian red deer. Anthropogenic restocking has promoted the Pyrenean contact zone, admixture events in populations on the Isle of Rum and in the Netherlands, and at least partly the admixture of the two main lineages in central-eastern Europe. Our analysis enabled detailed resolution of population structure of a large mammal widely distributed throughout Europe and contributes to resolving the evolutionary history, which can also inform conservation and management policies.

2.
Heredity (Edinb) ; 130(5): 269-277, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36944856

RESUMO

Previous studies indicated that in some species phylogeographic patterns obtained in the analysis of nuclear and mitochondrial DNA (mtDNA) markers can be different. Such mitonuclear discordance can have important evolutionary and ecological consequences. In the present study, we aimed to check whether there was any discordance between mtDNA and nuclear DNA in the bank vole population in the contact zone of its two mtDNA lineages. We analysed the population genetic structure of bank voles using genome-wide genetic data (SNPs) and diversity of sequenced heart transcriptomes obtained from selected individuals from three populations inhabiting areas outside the contact zone. The SNP genetic structure of the populations confirmed the presence of at least two genetic clusters, and such division was concordant with the patterns obtained in the analysis of other genetic markers and functional genes. However, genome-wide SNP analyses revealed the more detailed structure of the studied population, consistent with more than two bank vole recolonisation waves, as recognised previously in the study area. We did not find any significant differences between individuals representing two separate mtDNA lineages of the species in functional genes coding for protein-forming complexes, which are involved in the process of cell respiration in mitochondria. We concluded that the contemporary genetic structure of the populations and the width of the contact zone were shaped by climatic and environmental factors rather than by genetic barriers. The studied populations were likely isolated in separate Last Glacial Maximum refugia for insufficient amount of time to develop significant genetic differentiation.


Assuntos
DNA Mitocondrial , Genômica , Humanos , Animais , Polônia , Filogenia , DNA Mitocondrial/genética , Arvicolinae/genética , Variação Genética
3.
J Hered ; 107(4): 318-26, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26912909

RESUMO

We analyzed more than 600 red deer (Cervus elaphus) from large parts of its European distribution range at 13 microsatellite loci, presenting the first continent-wide study of this species using nuclear markers. Populations were clearly differentiated (overall F ST = 0.166, Jost's D est = 0.385), and the BAPS clustering algorithm yielded mainly geographically limited and adjacent genetic units. When forced into only 3 genetic clusters our data set produced a very similar geographic pattern as previously found in mtDNA phylogeographic studies: a western group from Iberia to central and parts of Eastern Europe, an eastern group from the Balkans to Eastern Europe, and a third group including the threatened relict populations from Sardinia and Mesola in Italy. This result was also confirmed by a multivariate approach to analyzing our data set, a discriminant analysis of principal components. Calculations of genetic diversity and effective population sizes (linkage disequilibrium approach) yielded the lowest results for Italian (Sardinia, Mesola; N e between 2 and 8) and Scandinavian red deer, in line with known bottlenecks in these populations. Our study is the first to present comparative nuclear genetic data in red deer across Europe and may serve as a baseline for future analyses of genetic diversity and structuring in this widespread ungulate.


Assuntos
Cervos/classificação , Cervos/genética , Variação Genética , Genética Populacional , Repetições de Microssatélites , Animais , Europa (Continente) , Geografia , Filogenia , Filogeografia , Densidade Demográfica
4.
Ecol Evol ; 12(5): e8931, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35600675

RESUMO

To provide the most comprehensive picture of species phylogeny and phylogeography of European roe deer (Capreolus capreolus), we analyzed mtDNA control region (610 bp) of 1469 samples of roe deer from Central and Eastern Europe and included into the analyses additional 1541 mtDNA sequences from GenBank from other regions of the continent. We detected two mtDNA lineages of the species: European and Siberian (an introgression of C. pygargus mtDNA into C. capreolus). The Siberian lineage was most frequent in the eastern part of the continent and declined toward Central Europe. The European lineage contained three clades (Central, Eastern, and Western) composed of several haplogroups, many of which were separated in space. The Western clade appeared to have a discontinuous range from Portugal to Russia. Most of the haplogroups in the Central and the Eastern clades were under expansion during the Weichselian glacial period before the Last Glacial Maximum (LGM), while the expansion time of the Western clade overlapped with the Eemian interglacial. The high genetic diversity of extant roe deer is the result of their survival during the LGM probably in a large, contiguous range spanning from the Iberian Peninsula to the Caucasus Mts and in two northern refugia.

5.
Acta Theriol (Warsz) ; 56(1): 1-12, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21350595

RESUMO

European red deer are known to show a conspicuous phylogeographic pattern with three distinct mtDNA lineages (western, eastern and North-African/Sardinian). The western lineage, believed to be indicative of a southwestern glacial refuge in Iberia and southern France, nowadays covers large areas of the continent including the British Isles, Scandinavia and parts of central Europe, while the eastern lineage is primarily found in southeast-central Europe, the Carpathians and the Balkans. However, large parts of central Europe and the whole northeast of the continent were not covered by previous analyses. To close this gap, we produced mtDNA control region sequences from more than 500 red deer from Denmark, Germany, Poland, Lithuania, Belarus, Ukraine and western Russia and combined our data with sequences available from earlier studies to an overall sample size of almost 1,100. Our results show that the western lineage extends far into the European east and is prominent in all eastern countries except for the Polish Carpathians, Ukraine and Russia where only eastern haplotypes occurred. While the latter may actually reflect the natural northward expansion of the eastern lineage after the last ice age, the present distribution of the western lineage in eastern Europe may in large parts be artificial and a result of translocations and reintroduction of red deer into areas where the species became extinct in historical times.

6.
PLoS One ; 16(8): e0255398, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34388162

RESUMO

Stable isotope analyses of bone collagen are often used in palaeoecological studies to reveal environmental conditions in the habitats of different herbivore species. However, such studies require valuable reference data, obtained from analyses of modern individuals, in habitats of well-known conditions. In this article, we present the stable carbon and nitrogen isotope composition of bone collagen from modern red deer (N = 242 individuals) dwelling in various habitats (N = 15 study sites) in Europe. We investigated which of the selected climatic and environmental factors affected the δ13C and δ15N values in bone collagen of the studied specimens. Among all analyzed factors, the percent of forest cover influenced the carbon isotopic composition most significantly, and decreasing forest cover caused an increase in δ13C values. The δ15N was positively related to the proportion of open area and (only in the coastal areas) negatively related to the distance to the seashore. Using rigorous statistical methods and a large number of samples, we confirmed that δ13C and δ15N values can be used as a proxy of past habitats of red deer.


Assuntos
Cervos , Animais , Isótopos de Carbono , Ecossistema , Isótopos de Nitrogênio
7.
Sci Rep ; 11(1): 9680, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33958636

RESUMO

The wild boar Sus scrofa is one of the widely spread ungulate species in Europe, yet the origin and genetic structure of the population inhabiting Central and Eastern Europe are not well recognized. We analysed 101 newly obtained sequences of complete mtDNA genomes and 548 D-loop sequences of the species and combined them with previously published data. We identified five phylogenetic clades in Europe with clear phylogeographic pattern. Two of them occurred mainly in western and central part of the continent, while the range of the third clade covered North-Eastern, Central and South-Eastern Europe. The two other clades had rather restricted distribution. In Central Europe, we identified a contact zone of three mtDNA clades. Population genetic structure reflected clear phylogeographic pattern of wild boar in this part of Europe. The contribution of lineages originating from the southern (Dinaric-Balkan) and eastern (northern cost of the Black Sea) areas to the observed phylogeographic pattern of the species in Central and Eastern Europe was larger than those from the regions located in southern France, Iberian, and Italian Peninsulas. The present work was the first mitogenomic analysis conducted in Central and Eastern Europe to study genetic diversity and structure of wild boar population.


Assuntos
Filogeografia , Sus scrofa/classificação , Animais , Demografia , Europa (Continente) , Variação Genética , Genoma Mitocondrial , Sus scrofa/genética
8.
PLoS One ; 14(5): e0216361, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31067251

RESUMO

We analysed a fragment (247 bp) of cytochrome b of mitochondrial DNA sequenced using 353 samples of yellow-necked mice Apodemus flavicollis trapped in seven forests and along three woodlot transects in north-eastern Poland. Our aims were to identify the phylogeographic pattern and mtDNA structure of the population and to evaluate the role of environmental conditions in shaping the spatial pattern of mtDNA diversity. We found out that three European haplogroups occurred sympatrically in north-eastern Poland. Inferences based on mtDNA haplotype distribution and frequency defined five subpopulations. The mtDNA-based structure of mice significantly correlated with winter temperature: frequency of Haplogroup 1 was positively, and that of Haplogroup 3 negatively correlated to mean temperature of January in the year of trapping. Synthesis of the published pan-European data on the species phylogeography also showed that the possibly 'thermophilous' Haplogroup 1 has the westernmost occurrence, whereas the more 'cold-resistant' Haplogroup 3 occurs much further to north-east than the other haplogroups. The observed patter may be a byproduct of the tight coevolution with nuclear genes, as we have earlier found that - in mice population in NE Poland - the spatial pattern of nuclear DNA was best explained by January temperature. Alternatively, the observed association of mitochondrial genetic variation with temperature is possible to be adaptive as cytochrome b is involved in the process of ATP production via oxidative phosphorylation.


Assuntos
DNA Mitocondrial/genética , Temperatura , Animais , Núcleo Celular/genética , Citocromos b/genética , Camundongos , Filogeografia , Polônia , Estações do Ano
9.
Ecol Evol ; 8(16): 8171-8186, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30250693

RESUMO

The goal of this study, conducted in seven large woodlands and three areas with small woodlots in northeastern Poland in 2004-2008, was to infer genetic structure in yellow-necked mouse Apodemus flavicollis population and to evaluate the roles of environmental and population ecology variables in shaping the spatial pattern of genetic variation using 768 samples genotyped at 13 microsatellite loci. Genetic variation was very high in all studied regions. The primal genetic subdivision was observed between the northern and the southern parts of the study area, which harbored two major clusters and the intermediate area of highly admixed individuals. The probability of assignment of individual mice to the northern cluster increased significantly with lower temperatures of January and July and declined in regions with higher proportion of deciduous and mixed forests. Despite the detected structure, genetic differentiation among regions was very low. Fine-scale structure was shaped by the population density, whereas higher level structure was mainly shaped by geographic distance. Genetic similarity indices were highly influenced by mouse abundance (which positively correlated with the share of deciduous forests in the studied regions) and exhibited the greatest change between 0 and 1 km in the forests, 0 and 5 km in small woodlots. Isolation by distance pattern, calculated among regions, was highly significant but such relationship between genetic and geographic distance was much weaker, and held the linearity at very fine scale (~1.5 km), when analyses were conducted at individual level.

10.
Ecol Evol ; 5(19): 4410-25, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26664688

RESUMO

Ecological and environmental heterogeneity can produce genetic differentiation in highly mobile species. Accordingly, local adaptation may be expected across comparatively short distances in the presence of marked environmental gradients. Within the European continent, wolves (Canis lupus) exhibit distinct north-south population differentiation. We investigated more than 67-K single nucleotide polymorphism (SNP) loci for signatures of local adaptation in 59 unrelated wolves from four previously identified population clusters (northcentral Europe n = 32, Carpathian Mountains n = 7, Dinaric-Balkan n = 9, Ukrainian Steppe n = 11). Our analyses combined identification of outlier loci with findings from genome-wide association study of individual genomic profiles and 12 environmental variables. We identified 353 candidate SNP loci. We examined the SNP position and neighboring megabase (1 Mb, one million bases) regions in the dog (C. lupus familiaris) genome for genes potentially under selection, including homologue genes in other vertebrates. These regions included functional genes for, for example, temperature regulation that may indicate local adaptation and genes controlling for functions universally important for wolves, including olfaction, hearing, vision, and cognitive functions. We also observed strong outliers not associated with any of the investigated variables, which could suggest selective pressures associated with other unmeasured environmental variables and/or demographic factors. These patterns are further supported by the examination of spatial distributions of the SNPs associated with universally important traits, which typically show marked differences in allele frequencies among population clusters. Accordingly, parallel selection for features important to all wolves may eclipse local environmental selection and implies long-term separation among population clusters.

11.
PLoS One ; 9(10): e109147, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25271423

RESUMO

We investigated contemporary and historical influences on the pattern of genetic diversity of European roe deer (Capreolus capreolus). The study was conducted in northeastern Poland, a zone where vast areas of primeval forests are conserved and where the European roe deer was never driven to extinction. A total of 319 unique samples collected in three sampling areas were genotyped at 16 microsatellites and one fragment (610 bp) of mitochondrial DNA (mtDNA) control region. Genetic diversity was high, and a low degree of genetic differentiation among sampling areas was observed with both microsatellites and mtDNA. No evidence of genetic differentiation between roe deer inhabiting open fields and forested areas was found, indicating that the ability of the species to exploit these contrasting environments might be the result of its phenotypic plasticity. Half of the studied individuals carried an mtDNA haplotype that did not belong to C. capreolus, but to a related species that does not occur naturally in the area, the Siberian roe deer (C. pygargus). No differentiation between individuals with Siberian and European mtDNA haplotypes was detected at microsatellite loci. Introgression of mtDNA of Siberian roe deer into the genome of European roe deer has recently been detected in eastern Europe. Such introgression might be caused by human-mediated translocations of Siberian roe deer within the range of European roe deer or by natural hybridization between these species in the past.


Assuntos
Cervos/genética , Hibridização Genética , Animais , Cervos/classificação , Variação Genética , Dados de Sequência Molecular , Filogenia , Polônia
12.
PLoS One ; 8(10): e76454, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24146871

RESUMO

European wolves (Canis lupus) show population genetic structure in the absence of geographic barriers, and across relatively short distances for this highly mobile species. Additional information on the location of and divergence between population clusters is required, particularly because wolves are currently recolonizing parts of Europe. We evaluated genetic structure in 177 wolves from 11 countries using over 67K single nucleotide polymorphism (SNP) loci. The results supported previous findings of an isolated Italian population with lower genetic diversity than that observed across other areas of Europe. Wolves from the remaining countries were primarily structured in a north-south axis, with Croatia, Bulgaria, and Greece (Dinaric-Balkan) differentiated from northcentral wolves that included individuals from Finland, Latvia, Belarus, Poland and Russia. Carpathian Mountain wolves in central Europe had genotypes intermediate between those identified in northcentral Europe and the Dinaric-Balkan cluster. Overall, individual genotypes from northcentral Europe suggested high levels of admixture. We observed high diversity within Belarus, with wolves from western and northern Belarus representing the two most differentiated groups within northcentral Europe. Our results support the presence of at least three major clusters (Italy, Carpathians, Dinaric-Balkan) in southern and central Europe. Individuals from Croatia also appeared differentiated from wolves in Greece and Bulgaria. Expansion from glacial refugia, adaptation to local environments, and human-related factors such as landscape fragmentation and frequent killing of wolves in some areas may have contributed to the observed patterns. Our findings can help inform conservation management of these apex predators and the ecosystems of which they are part.


Assuntos
Variação Genética , Lobos/genética , Animais , Europa (Continente) , Marcadores Genéticos , Genética Populacional , Geografia , Humanos , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA