Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Anal Chem ; 95(2): 1395-1401, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36547121

RESUMO

Despite mass spectrometry (MS) being proven powerful for the characterization of synthetic polymers, its potential for the analysis of single particle microplastics (MPs) is yet to be fully disclosed. To date, MPs are regarded as ubiquitous contaminants, but the limited availability of techniques that enable full characterizations of MPs results in a lack of systematic data regarding their occurrence. In this study, an atmospheric solid analysis probe (ASAP) coupled to a compact quadrupole MS is proposed for the chemical analysis of single particle microplastics, while maintaining full compatibility with complementary staining and image analysis approaches. A two-stage ASAP probe temperature program was optimized for the removal of additives and surface contaminants followed by the actual polymer characterization. The method showed specific mass spectra for a wide range of single particle MPs, including polyolefins, polyaromatics, polyacrylates, (bio)polyesters, polyamides, polycarbonates, and polyacrylonitriles. The single particle size detection limits for polystyrene MPs were found to be 30 and 5 µm in full scan and selected ion recording mode, respectively. Moreover, results are presented of a multimodal microplastic analysis approach in which filtered particles are first characterized by staining and fluorescence microscopy, followed by simple probe picking of individual particles for subsequent analysis by ASAP-MS. The method provides a full characterization of MP contamination, including particle number, particle size, particle shape, and chemical identity. The applicability of the developed multimodal method was successfully demonstrated by the analysis of MPs in bioplastic bottled water.


Assuntos
Microplásticos , Poluentes Químicos da Água , Microplásticos/análise , Plásticos/química , Cromatografia Gasosa-Espectrometria de Massas , Poluentes Químicos da Água/análise , Espectrometria de Massas , Monitoramento Ambiental
2.
Anal Bioanal Chem ; 414(11): 3459-3470, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35220465

RESUMO

Due to the absence of chromatographic separation, ambient ionization mass spectrometry had the potential to improve the throughput of control laboratories in the last decades and will soon be an excellent approach for on-site use as well. In this study, an atmospheric solids analysis probe (ASAP) with a single quadrupole mass analyzer has been evaluated to identify anabolic steroid esters rapidly. Sample introduction, applied scan time, and probe temperature were optimized for sensitivity. The in-source fragmentations of seventeen selected steroid esters, commonly found in illicit samples, were determined by applying different cone voltages (12, 20, 30, and 40 V). A spectral library was created for these steroid esters based on the four stages of in-source fragmentation spectra. The applicability of this method was demonstrated for the rapid identification of steroid esters in oily injection solutions, providing test results in less than 2 min.


Assuntos
Anabolizantes , Ésteres , Anabolizantes/análise , Espectrometria de Massas , Esteroides/análise , Congêneres da Testosterona
3.
Anal Chem ; 93(23): 8122-8127, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34077188

RESUMO

A hand-held laser diode thermal desorption electrospray ionization (LDTD-ESI) mass spectrometry (MS) method was developed for rapid screening of illegal substances in solid samples. To achieve that, a simple, inexpensive, battery-powered surgical laser diode at 940 nm was employed to ablate the solid samples. The potential of using a black polytetrafluoroethylene substrate to enhance the analytes' desorption to the gas phase was investigated and demonstrated. Among the optimized ESI parameters, the solvent (methanol/water, 50:50, v/v) and the flow rate (50 µL h-1) were critical to obtain the best sensitivity. The applicability was demonstrated for the rapid identification of selective androgen receptor modulators (SARMs) in pills and powders based on accurate mass measurements by time-of-flight MS. Also, the hand-held LDTD-ESI was combined with a transportable single quadrupole MS. The same SARMs samples were analyzed, and identifications were based on in-source cone voltage fragmentation patterns observed. These initial results demonstrate the applicability of the developed simplified LDTD-ESI MS method for future on-site testing of organic compounds in solid samples.


Assuntos
Lasers Semicondutores , Espectrometria de Massas em Tandem , Espectrometria de Massas por Ionização por Electrospray
4.
Anal Chem ; 93(47): 15736-15743, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34726384

RESUMO

Paramagnetic microspheres can be used in planar array fluorescence immunoassays for single or multiplex screening of food contaminants. However, no confirmation of the molecular identity is obtained. Coated blade spray (CBS) is a direct ionization mass spectrometry (MS) technique, and when combined with triple quadrupole MS/MS, it allows for rapid confirmation of food contaminants. The lack of chromatography in CBS, though, compromises the specificity of the measurement for unequivocal identification of contaminants, based on the European Union (EU) regulation. Therefore, a rapid and easy-to-use immuno-magnetic blade spray (iMBS) method was developed in which immuno-enriched paramagnetic microspheres replace the coating of CBS. The iMBS-MS/MS method was fully optimized, validated in-house following the EU 2021/808 regulation, and benchmarked against a commercial lateral flow immunoassay (LFIA) for on-site screening of DA. The applicability of iMBS-MS/MS was further demonstrated by analyzing incurred mussel samples. The combination of immunorecognition and MS/MS detection in iMBS-MS/MS enhances the measurement's selectivity, which is demonstrated by the rapid differentiation between the marine toxin domoic acid (DA) and its structural analog kainic acid (KA), which cannot be achieved with the LFIA alone. Interestingly, this first-ever reported iMBS-MS/MS method is generic and can be adapted to include any other immuno-captured food contaminant, provided that monoclonal antibodies are available, thus offering a complementary confirmatory analysis approach to multiplex immunoassay screening methods. Moreover, thanks to its speed of analysis, iMBS-MS/MS can bridge the logistics gap between future large-scale on-site testings using LFIAs and classical time-consuming confirmatory MS analysis performed in official control laboratories.


Assuntos
Bivalves , Espectrometria de Massas em Tandem , Animais , Ácido Caínico/análogos & derivados , Fenômenos Magnéticos , Microesferas
5.
J Dairy Sci ; 104(4): 5069-5078, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33663857

RESUMO

The elimination of recombinant bovine somatotropin (rbST) and its induced antibodies through milk of 2 formulations is studied to propose a control strategy for its use or abuse. Two dairy cows were treated with alanine-rbST (Ala-rbST), which is identical to endogenous bovine somatotropin, and ten dairy cows were treated with methionine-rbST (Met-rbST), which differs by 1 amino acid from endogenous bovine somatotropin. We developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method able to measure rbST at a decision limit (CCα) of 0.8 ng/mL and 2.3 ng/mL for serum and milk, respectively. The results show that the administered Ala-rbST is transferred from blood to milk but that this is not the case for Met-rbST. This suggests a blood-milk barrier-related specificity for these compounds. In addition, rbST-induced antibodies were formed in animals treated with Ala-rbST and those treated with Met-rbST. In both treatments, the rbST-induced antibodies were transferred from blood to milk, showing no blood-milk barrier specificity for these antibodies. These elimination patterns show that, for enforcement purposes, the detection of rbST-induced antibodies in tank milk can serve to screen for rbST administration, and subsequent confirmatory serum analysis by LC-MS/MS is needed to identify whether Ala-rbST or Met-rbST has been used.


Assuntos
Metionina , Leite , Alanina , Animais , Bovinos , Cromatografia Líquida/veterinária , Feminino , Hormônio do Crescimento , Proteínas Recombinantes , Espectrometria de Massas em Tandem/veterinária
6.
Sensors (Basel) ; 21(5)2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33800036

RESUMO

In current food safety monitoring, lateral flow immunoassays (LFIAs) are widely used for rapid food contaminant screening. Recent advances include smartphone readouts, offering semi-quantitative analysis of LFIAs with time, location, and data transfer in case of on-site testing. Following the screening, the next step in the EU regulations is confirmation by, e.g., liquid chromatography-tandem mass spectrometry (LC-MS/MS). In this work, using direct analysis in real time ambient ionization and triple quadrupole MS/MS (DART-QqQ-MS/MS), we achieved rapid confirmation of the identity of the substance(s) causing the LFIA result. In the workflow proposed, an individual performs the (on-site) smartphone LFIA screening, and when the result is suspect, an identification LFIA (ID-LFIA) strip is developed with the same sample extract. The ID-LFIA can be dissociated and rapidly analyzed in a control laboratory with DART-QqQ-MS/MS. The ID-LFIA consists of multiple lines of monoclonal antibodies against the mycotoxin deoxynivalenol, acting as a bioaffinity trap. The ID-LFIA/DART-QqQ-MS/MS approach has been developed and validated, along with the screening smartphone LFIA, and has demonstrated its applicability by analyzing incurred and spiked samples. The developed approach has been critically compared with our previous direct electrospray ionization MS method and was found to provide highly complementary information on the total deoxynivalenol contamination in the sample.


Assuntos
Imunoensaio , Smartphone , Espectrometria de Massas em Tandem , Cromatografia Líquida , Tricotecenos/análise
7.
Anal Chem ; 92(23): 15587-15595, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33185097

RESUMO

Sandwich lateral flow immunoassays (LFIAs) are limited at high antigen concentrations by the hook effect, leading to a contradictory decrease in the test line (T) intensity and false-negative results. The hook effect is mainly associated with the loss of T, and research focuses on minimizing this effect. Nevertheless, the control line (C) intensity is also affected at higher analyte concentrations, undesirably influencing the T/C ratio in LFIA readers. The main aim of this work is to identify and understand these high antigen concentration effects in order to develop ubiquitous strategies to interpret and mitigate such effects. Four complementary experiments were performed: performance assessment of three different allergen LFIAs (two for hazelnut, one for peanut) over 0.075-3500 ppm, LFIAs with C only, surface plasmon resonance (SPR) binding experiments on the immobilized control antibody, and smartphone video recording of LFIAs during their development. As antigen concentrations increase, the C signal decreases before the T signal does, suggesting that distinct mechanisms underlie these intensity reductions. Reduced binding at the C occurred even in the absence of T, so the upfront T does not explain the loss of C. SPR confirmed that the C antibody favors binding with free labeled antibody compared with a labeled antibody-analyte complex, indicating that in antigen excess, binding is reduced at C before T. Finally, a smartphone-based video method was developed for dynamically monitoring the LFIA development in real time to distinguish between different concentration-dependent effects. Digitally analyzing the data allows clear differentiation of highly positive samples and false-negative samples and can indicate whether the LFIA is in the dynamic working range or at critically high concentrations. The aim of this work is to identify and understand such high antigen concentration effects in order to develop ubiquitous strategies to interpret and mitigate such effects.


Assuntos
Alérgenos/análise , Imunoensaio/métodos , Alérgenos/imunologia , Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , Arachis/imunologia , Corylus/imunologia , Imunoensaio/instrumentação , Limite de Detecção , Smartphone , Propriedades de Superfície
8.
Anal Bioanal Chem ; 412(27): 7547-7558, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32860092

RESUMO

Lateral flow immunoassays (LFIAs) are widely used for rapid food safety screening analysis. Thanks to simplified protocols and smartphone readouts, LFIAs are expected to be increasingly used on-site, even by non-experts. As a typical follow-up in EU regulatory settings, suspect samples are sent to laboratories for confirmatory analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS). However, re-analysis by LC-MS/MS is laborious and time-consuming. In this work, an identification LFIA (ID-LFIA) approach followed by quadrupole-orbitrap MS or triple quadrupole MS/MS analysis is presented. As a proof of concept, a dedicated ID-LFIA strip was developed for the mycotoxin deoxynivalenol (DON) following its initial screening by a commercial smartphone LFIA. The ID-LFIA strip can be simply immersed in the same sample extract used for the smartphone LFIA screening, and next, DON is retrieved from the monoclonal antibody with a dissociation solution consisting of methanol/ammonia. The solution thus obtained was analyzed directly in MS in order to rapidly confirm the presence of DON and any cross-reacting species. The protocol developed is capable of coping with severe ion suppression caused by LFIA buffers and nitrocellulose substrate residues. Initial analysis of blank, spiked, and incurred samples showed that the newly developed ID-LFIA-MS method was able to confirm the presence or absence of mycotoxins in the samples previously analyzed by LFIA and also differentiate between DON and DON 3-glucoside yielding the positive screening result. The concept and technique developed are envisaged to complement on-site screening and confirmation of any low molecular weight contaminant in future food control frameworks. Graphical abstract.


Assuntos
Análise de Alimentos/métodos , Contaminação de Alimentos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Tricotecenos/análise , Cerveja/análise , Colódio/química , Desenho de Equipamento , Análise de Alimentos/instrumentação , Hordeum/química , Imunoensaio/instrumentação , Imunoensaio/métodos , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Triticum/química
9.
Anal Bioanal Chem ; 412(5): 1111-1122, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31865418

RESUMO

In oral bioavailability studies, evaluation of the absorption and transport of drugs and food components across the intestinal barrier is crucial. Advances in the field of organ-on-a-chip technology have resulted in a dynamic gut-on-a-chip model that better mimics the in vivo microenvironment of the intestine. Despite a few recent integration attempts, ensuring a biologically relevant microenvironment while coupling with a fully online detection system still represents a major challenge. Herein, we designed an online technique to measure drug permeability and analyse unknown product formation across an intestinal epithelial layer of Caco-2 and HT29-MTX cells cultured on a flow-through Transwell system, while ensuring the quality and relevance of the biological model. Chip-based ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) was coupled to the dynamic Transwell system via a series of switching valves, thus allowing alternating measurements of the apical and basolateral sides of the in vitro model. Two trap columns were integrated for online sample pre-treatment and compatibility enhancement. Temporal analysis of the intestinal permeability was successfully demonstrated using verapamil as a model drug and ergotamine epimers as a model for natural toxins present in foods. Evidence was obtained that our newly developed dynamic system provided reliable results versus classical static in vitro models, and moreover, for the first time, epimer-specific transport is shown for ergotamine. Finally, initial experiments with the drug granisetron suggest that metabolic activity can be studied as well, thus highlighting the versatility of the bio-integrated online analysis system developed. Graphical abstract.


Assuntos
Cromatografia Líquida/métodos , Mucosa Intestinal/metabolismo , Dispositivos Lab-On-A-Chip , Modelos Biológicos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Administração Oral , Disponibilidade Biológica , Biotransformação , Células CACO-2 , Ergotamina/administração & dosagem , Ergotamina/farmacocinética , Granisetron/administração & dosagem , Granisetron/farmacocinética , Células HT29 , Humanos , Técnicas In Vitro , Limite de Detecção , Permeabilidade , Verapamil/administração & dosagem , Verapamil/farmacocinética
10.
Anal Chem ; 90(17): 10409-10416, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30063331

RESUMO

Reactions in confined compartments like charged microdroplets are of increasing interest, notably because of their substantially increased reaction rates. When combined with ambient ionization mass spectrometry (MS), reactions in charged microdroplets can be used to improve the detection of analytes or to study the molecular details of the reactions in real time. Here, we introduce a reactive laser ablation electrospray ionization (reactive LAESI) time-resolved mass spectrometry (TRMS) method to perform and study reactions in charged microdroplets. We demonstrate this approach with a class of reactions new to reactive ambient ionization MS: so-called click chemistry reactions. Click reactions are high-yielding reactions with a high atom efficiency, and are currently drawing significant attention from fields ranging from bioconjugation to polymer modification. Although click reactions are typically at least moderately fast (time scale of minutes to a few hours), in a reactive LAESI approach a substantial increase of reaction time is required for these reactions to occur. This increase was achieved using microdroplet chemistry and followed by MS using the insertion of a reaction tube-up to 1 m in length-between the LAESI source and the MS inlet, leading to near complete conversions due to significantly extended microdroplet lifetime. This novel approach allowed for the collection of kinetic data for a model (strain-promoted) click reaction between a substituted tetrazine and a strained alkyne and showed in addition excellent instrument stability, improved sensitivity, and applicability to other click reactions. Finally, the methodology was also demonstrated in a mass spectrometry imaging setting to show its feasibility in future imaging experiments.

11.
Anal Bioanal Chem ; 410(22): 5353-5371, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29582120

RESUMO

In this critical review, we provide a comprehensive overview of immunochemical food allergen assays and detectors in the context of their user-friendliness, through their connection to smartphones. Smartphone-based analysis is centered around citizen science, putting analysis into the hands of the consumer. Food allergies represent a significant worldwide health concern and consumers should be able to analyze their foods, whenever and wherever they are, for allergen presence. Owing to the need for a scientific background, traditional laboratory-based detection methods are generally unsuitable for the consumer. Therefore, it is important to develop simple, safe, and rapid assays that can be linked with smartphones as detectors to improve user accessibility. Smartphones make excellent detection systems because of their cameras, embedded flash functions, portability, connectivity, and affordability. Therefore, this review has summarized traditional laboratory-based methods for food allergen detection such as enzyme-linked-immunosorbent assay, flow cytometry, and surface plasmon resonance, and the potential to modernize these methods by interfacing them with a smartphone readout system, based on the aforementioned smartphone characteristics. This is the first review focusing on smartphone-based food-allergen detection methods designed with the intention of being consumer-friendly. Graphical abstract A smartphone-based food allergen detection system in three easy steps (1) sample preparation, (2) allergen detection on a smartphone using antibodies, which then transmits the data wirelessly, (3) analytical results sent straight to smartphone.


Assuntos
Alérgenos/análise , Hipersensibilidade Alimentar/diagnóstico , Imunoensaio/métodos , Smartphone , Animais , Anticorpos Imobilizados/química , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Desenho de Equipamento , Citometria de Fluxo/instrumentação , Citometria de Fluxo/métodos , Análise de Perigos e Pontos Críticos de Controle/métodos , Humanos , Imunoensaio/instrumentação , Smartphone/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Ressonância de Plasmônio de Superfície/métodos
12.
Anal Chem ; 89(3): 1427-1432, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28208290

RESUMO

A simplified coupling of surface plasmon resonance (SPR) immuno-biosensing with ambient ionization mass spectrometry (MS) was developed. It combines two orthogonal analysis techniques: the biosensing capability of SPR and the chemical identification power of high resolution MS. As a proof-of-principle, deoxynivalenol (DON), an important mycotoxin, was captured using an SPR gold chip containing an antifouling layer and monoclonal antibodies against the toxin and, after washing, the chip could be taken out and analyzed by direct spray MS of the biosensor chip to confirm the identity of DON. Furthermore, cross-reacting conjugates of DON present in a naturally contaminated beer could be successfully identified, thus showing the potential of rapid identification of (un)expected cross-reacting molecules.


Assuntos
Técnicas Biossensoriais/métodos , Espectrometria de Massas por Ionização por Electrospray , Ressonância de Plasmônio de Superfície , Tricotecenos/análise , Anticorpos Monoclonais/imunologia , Fungos/metabolismo , Ouro/química , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Tricotecenos/imunologia
13.
Anal Chem ; 89(7): 4031-4037, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28252942

RESUMO

Direct analysis of synthetic fibers under ambient conditions is highly desired to identify the polymer, the finishes applied and irregularities that may compromise its performance and value. In this paper, laser ablation electrospray ionization ion mobility time-of-flight mass spectrometry (LAESI-IMS-TOF-MS) was used for the analysis of synthetic polymers and fibers. The key to this analysis was the absorption of laser light by aliphatic and aromatic nitrogen functionalities in the polymers. Analysis of polyamide (PA) 6, 46, 66, and 12 pellets and PA 6, 66, polyaramid and M5 fibers yielded characteristic fragment ions without any sample pretreatment, enabling their unambiguous identification. Synthetic fibers are, in addition, commonly covered with a surface layer for improved adhesion and processing. The same setup, but operated in a transient infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) mode, allowed the detailed characterization of the fiber finish layer and the underlying polymer. Differences in finish layer distribution may cause variations in local properties of synthetic fibers. Here we also show the feasibility of mass spectrometry imaging (MSI) of the distribution of a finish layer on the synthetic fiber and the successful detection of local surface defects.

14.
Anal Chem ; 88(4): 2489-96, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26813807

RESUMO

Forensic hair evidence can be used to obtain retrospective timelines of drug use by analysis of hair segments. However, this is a laborious and time-consuming process, and mass spectrometric (MS) imaging techniques, which show great potential for single-hair targeted analysis, are less useful due to differences in hair growth rate between individual hairs. As an alternative, a fast untargeted analysis method was developed that uses direct analysis in real time-high-resolution mass spectrometry (DART-HRMS) to longitudinally scan intact locks of hair without extensive sample preparation or segmentation. The hair scan method was validated for cocaine against an accredited liquid chromatography/tandem mass spectrometry (LC/MS/MS) method. The detection limit for cocaine in hair was found to comply with the cutoff value of 0.5 ng/mg recommended by the Society of Hair Testing; that is, the DART hair scan method is amenable to forensic cases. Under DART conditions, no significant thermal degradation of cocaine occurred. The standard DART spot size of 5.1 ± 1.1 mm could be improved to 3.3 ± 1.0 mm, corresponding to approximately 10 days of hair growth, by using a high spatial resolution exit cone. By use of data-dependent product ion scans, multiple drugs of abuse could be detected in a single drug user hair scan with confirmation of identity by both exact mass and MS/HRMS fragmentation patterns. Furthermore, full-scan high-resolution data were retrospectively interrogated versus a list of more than 100 compounds and revealed additional hits and temporal profiles in good correlation with reported drug use.


Assuntos
Cocaína/análise , Cabelo/química , Espectrometria de Massas em Tandem , Cromatografia Líquida/instrumentação , Cocaína/metabolismo , Humanos , Espectrometria de Massas em Tandem/instrumentação , Fatores de Tempo
15.
Rapid Commun Mass Spectrom ; 30(21): 2331-2340, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27528453

RESUMO

RATIONALE: Recently, several direct and/or ambient mass spectrometry (MS) approaches have been suggested for drugs of abuse imaging in hair. The use of mass spectrometers with insufficient selectivity could result in false-positive measurements due to isobaric interferences. Different mass analyzers have been evaluated regarding their selectivity and sensitivity for the detection of Δ9-tetrahydrocannabinol (THC) from intact hair samples using direct analysis in real time (DART) ionization. METHODS: Four different mass analyzers, namely (1) an orbitrap, (2) a quadrupole orbitrap, (3) a triple quadrupole, and (4) a quadrupole time-of-flight (QTOF), were evaluated. Selectivity and sensitivity were assessed by analyzing secondary THC standard dilutions on stainless steel mesh screens and blank hair samples, and by the analysis of authentic cannabis user hair samples. Additionally, separation of isobaric ions by use of travelling wave ion mobility (TWIM) was investigated. RESULTS: The use of a triple quadrupole instrument resulted in the highest sensitivity; however, transitions used for multiple reaction monitoring were only found to be specific when using high mass resolution product ion measurements. A mass resolution of at least 30,000 FWHM at m/z 315 was necessary to avoid overlap of THC with isobaric ions originating from the hair matrix. Even though selectivity was enhanced by use of TWIM, the QTOF instrument in resolution mode could not indisputably differentiate THC from endogenous isobaric ions in drug user hair samples. CONCLUSIONS: Only the high resolution of the (quadrupole) orbitrap instruments and the QTOF instrument in high-resolution mode distinguished THC in hair samples from endogenous isobaric interferences. As expected, enhanced selectivity compromises sensitivity and THC was only detectable in hair from heavy users. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Dronabinol/química , Cabelo/química , Espectrometria de Massas/métodos , Detecção do Abuso de Substâncias/métodos , Medicina Legal , Humanos , Peso Molecular
16.
Analyst ; 141(4): 1307-18, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26763589

RESUMO

A 6-plex competitive inhibition immunoassay for mycotoxins in barley was developed on a prototype portable nanostructured imaging surface plasmon resonance (iSPR) instrument, also referred to as imaging nanoplasmonics. As a benchmark for the prototype nanoplasmonics instrument, first a double 3-plex assay was developed for the detection of deoxynivalenol (DON), zearalenone (ZEA), T-2 toxin (T-2), ochratoxin A (OTA), fumonisin B1 (FB1) and aflatoxin B1 (AFB1) using a well-established benchtop SPR instrument and two biosensor chips. To this end, ovalbumin (OVA) conjugates of mycotoxins were immobilized on the chip via amine coupling. The SPR response was then recorded upon injection of a mixture of antibodies at a fixed concentration and the sample (or matrix-matched standard) over a chip with immobilized mycotoxin-OVA conjugates. The chips were regenerated after each sample using 10 mM HCl and 20 mM NaOH and could be used for at least 60 cycles. The limits of detection in barley (in µg kg(-1)) were determined to be 26 for DON, 6 for ZEA, 0.6 for T-2, 3 for OTA, 2 for FB1 and 0.6 for AFB1. Preliminary in-house validation showed that DON, T-2, ZEA and FB1 can be detected at the European Union regulatory limits, while for OTA and AFB1 sensitivities should be improved. Furthermore, measurement of naturally contaminated barley showed that the assay can be used as a semi-quantitative screening method for mycotoxins prior to liquid chromatography tandem mass spectrometry (LC-MS/MS). Finally, using the same bio-reagents the assay was transferred to a 6-plex format in the nanoplasmonics instrument and subsequently the two assays were compared. Although less sensitive, the 6-plex portable iSPR assay still allowed detection of DON, T-2, ZEA and FB1 at relevant levels. Therefore, the prototype iSPR shows potential for future applications in rapid in-field and at-line screening of multiple mycotoxins.


Assuntos
Contaminação de Alimentos/análise , Hordeum/química , Micotoxinas/análise , Nanotecnologia/métodos , Ressonância de Plasmônio de Superfície/métodos , Calibragem , Reações Cruzadas , Ouro/química , Imunoensaio , Limite de Detecção , Nanotecnologia/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação
17.
Anal Bioanal Chem ; 407(20): 6041-50, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26077745

RESUMO

The use of recombinant bovine somatotropin (rbST) to enhance milk production is approved in several countries, but it is prohibited in the European Union. According to EU legislation, it is necessary to confirm positive screening results prior to enforcement. Although adequate screening assays are available nowadays, development of liquid chromatography tandem mass spectrometry (LC-MS/MS) confirmatory methods to detect low levels of rbST is still a challenge. Here, we present a novel approach using immuno-affinity enrichment on monolithic micro-columns in combination with state-of-the-art ultra-high pressure LC-MS/MS (UHPLC-MS/MS) detection. The developed approach enables detection and confirmation of rbST in serum at a decision limit (CCα) concentration of 0.8 ng mL(-1). Furthermore, the method is easy to handle, robust and reproducible. We successfully applied the confirmatory method to serum samples from rbST treated cows that were found suspect after immunoassay-based screening. The use of rbST could be confirmed over 1 week after treatment, and the developed method demonstrated the sensitivity needed for effective control. Graphical Abstract Graphical summary of the workflow, for serum preparation, enrichment with monolith microcolumns and LC-MS/MS measurement of rbST.


Assuntos
Cromatografia de Afinidade/métodos , Hormônio do Crescimento/sangue , Espectrometria de Massas em Tandem/métodos , Animais , Bovinos , Cromatografia de Afinidade/instrumentação , Desenho de Equipamento , Feminino , Hormônio do Crescimento/administração & dosagem , Imunoensaio/instrumentação , Imunoensaio/métodos , Limite de Detecção , Espectrometria de Massas em Tandem/instrumentação
18.
Anal Chem ; 86(5): 2403-11, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24484216

RESUMO

A better characterization of nanometer-thick organic layers (monolayers) as used for engineering surface properties, biosensing, nanomedicine, and smart materials will widen their application. The aim of this study was to develop direct analysis in real time high-resolution mass spectrometry (DART-HRMS) into a new and complementary analytical tool for characterizing organic monolayers. To assess the scope and formulate general interpretation rules, DART-HRMS was used to analyze a diverse set of monolayers having different chemistries (amides, esters, amines, acids, alcohols, alkanes, ethers, thioethers, polymers, sugars) on five different substrates (Si, Si3N4, glass, Al2O3, Au). The substrate did not play a major role except in the case of gold, for which breaking of the weak Au-S bond that tethers the monolayer to the surface, was observed. For monolayers with stronger covalent interfacial bonds, fragmentation around terminal groups was found. For ester and amide-terminated monolayers, in situ hydrolysis during DART resulted in the detection of ions characteristic of the terminal groups (alcohol, amine, carboxylic acid). For ether and thioether-terminated layers, scission of C-O or C-S bonds also led to the release of the terminal part of the monolayer in a predictable manner. Only the spectra of alkane monolayers could not be interpreted. DART-HRMS allowed for the analysis of and distinction between monolayers containing biologically relevant mono or disaccharides. Overall, DART-HRMS is a promising surface analysis technique that combines detailed structural information on nanomaterials and ultrathin films with fast analyses under ambient conditions.


Assuntos
Espectrometria de Massas/métodos , Compostos Orgânicos/análise , Ouro/química
19.
Rapid Commun Mass Spectrom ; 28(7): 682-90, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24573798

RESUMO

RATIONALE: Forensic hair analysis methods are laborious, time-consuming and provide only a rough retrospective estimate of the time of drug intake. Recently, hair imaging methods using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) were reported, but these methods require the application of MALDI matrix and are performed under vacuum. Direct analysis of entire locks of hair without any sample pretreatment and with improved spatial resolution would thus address a need. METHODS: Hair samples were attached to stainless steel mesh screens and scanned in the X-direction using direct analysis in real time (DART) ambient ionization orbitrap MS. The DART gas temperature and the accuracy of the probed hair zone were optimized using Δ-9-tetrahydrocannabinol (THC) as a model compound. Since external contamination is a major issue in forensic hair analysis, sub-samples were measured before and after dichloromethane decontamination. RESULTS: The relative intensity of the THC signal in spiked blank hair versus that of quinine as the internal standard showed good reproducibility (26% RSD) and linearity of the method (R(2) = 0.991). With the DART hair scan THC could be detected in hair samples from different chronic cannabis users. The presence of THC was confirmed by quantitative liquid chromatography/tandem mass spectrometry. Zones with different THC content could be clearly distinguished, indicating that the method might be used for retrospective timeline assessments. Detection of THC in decontaminated drug user hair showed that the DART hair scan not only probes THC on the surface of hair, but penetrates deeply enough to measure incorporated THC. CONCLUSIONS: A new approach in forensic hair analysis has been developed by probing complete locks of hair using DART-MS. Longitudinal scanning enables detection of incorporated compounds and can be used as pre-screening for THC without sample preparation. The method could also be adjusted for the analysis of other drugs of abuse.


Assuntos
Dronabinol/análise , Cabelo/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Detecção do Abuso de Substâncias/métodos , Humanos , Modelos Lineares , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Analyst ; 139(16): 3968-76, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24919458

RESUMO

Mycotoxins are produced by fungi as secondary metabolites. They often multi-contaminate food and feed commodities posing a health risk to humans and animals. A fast and easy to apply multiplex screening of these commodities could be useful to detect multi-contamination. For this, we developed a semi-quantitative 6-plex immunoassay using a suspension array of paramagnetic colour-coded microspheres combined with imaging planar array detection for the mycotoxins aflatoxin B1, ochratoxin A, zearalenone, deoxynivalenol, T2-toxin, HT-2 toxin and fumonisin B1. Mycotoxin specific monoclonal antibodies were coupled to different sets of microspheres and mycotoxins conjugated to the fluorescent protein R-phycoerythrin served as reporter molecules. Competition between free mycotoxins in the sample and mixed reporter molecules for antibody binding sites on mixed microspheres created a multiplex direct inhibition immunoassay. The reagents were selected for no or low cross-interactions between the assays and cross-reactions with metabolites and possible masked forms were determined. A within-laboratory validation was carried out using blank and spiked barley samples. Furthermore, the 6-plex was used to screen available barley, and malted barley, reference materials. The validation showed very high inter and intra-day precision for all samples with a maximum relative standard deviation value of 10%. The screening assay allows easy and rapid multiplex detection of the target mycotoxins in barley according to EU legislation. With a cut off factor of 50%, based on the EU maximum levels, we were able to screen at 2 µg kg(-1) for aflatoxin B1, 2.5 µg kg(-1) for ochratoxin A, 625 µg kg(-1) for deoxynivalenol, 50 µg kg(-1) for zearalenone, 1000 µg kg(-1) for fumonisin B1 and 25 µg kg(-1) for T-2 toxin. Thanks to the transportable planar array system, the developed 6-plex has potential for future on-site testing. Future implementation of this method as a pre-screening tool, prior to instrumental analysis, is highly attractive since costly LC-MS/MS analysis of samples below the maximum levels can be avoided.


Assuntos
Hordeum/química , Imunoensaio/instrumentação , Micotoxinas/análise , Anticorpos Imobilizados/química , Desenho de Equipamento , Hordeum/microbiologia , Limite de Detecção , Microesferas , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA